Visualizing relative position of two straight lines in space: An exploratory study of the anaglyph in GeoGebra
Tang Minh Dung 1 * , Le Thai Bao Thien Trung 1, Nguyen Thi Nga 1
More Detail
1 Ho Chi Minh City University of Education, Vietnam
* Corresponding Author

Abstract

This study investigates whether Vietnamese students face specific challenges when visualizing skew versus intersecting lines and whether using the anaglyph feature of GeoGebra can help overcome these difficulties. Employing a design-based research approach over four phases with 12th-grade students, the study involved tasks in traditional paper-pencil and GeoGebra’s anaglyph environment, which offers 3D depth perception through color separation. The findings showed an improvement in students’ accuracy in spatial visualization on 2D surfaces after using anaglyphs, as they were better able to interpret the relative positions of lines in space. This research highlights the potential of low-cost, accessible digital tools like the anaglyph feature of GeoGebra in enhancing spatial understanding in educational systems with limited resources. The insights gained from this study contribute to geometry education by demonstrating how anaglyph representations can aid in 3D visualization.  

Keywords

References

  • Accascina, G., & Rogora, E. (2006). Using Cabri3D diagrams for teaching geometry. International Journal for Technology in Mathematics Education, 13(1), 11–22.
  • Assude, T., Capponi, B., Bertomeu, P., & Bonnet, J.-F. (1996). De l’économie et de l’écologie du travail avec le logiciel Cabri-Géomètre [The economics and ecology of work with Cabri-Géomètre software]. Petit x, 44, 53–79.
  • Atit, K., Power, J. R., Pigott, T., Lee, J., Geer, E. A., Uttal, D. H., Ganley, C. M., & Sorby, S. A. (2022). Examining the relations between spatial skills and mathematical performance: A meta-analysis. Psychonomic Bulletin and Review, 29(3), 699–720. https://doi.org/10.3758/s13423-021-02012-w
  • Baki, A., Kosa, T., & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre-service mathematics teachers. British Journal of Educational Technology, 42(2), 291–310. https://doi.org/10.1111/j.1467-8535.2009.01012.x
  • Bakó, M. (2003). Different projecting methods in teaching spatial geometry. In M. A. Mariotti (Eds.), Proceedings of the Third Conference of the European Society for Research in Mathematics Education (pp. 1-9). University of Pisa and ERME.
  • Berciano, A., & Gutiérrez, G. (2015). How to improve spatial visualization ability of preservice teachers of childhood education: A teaching experiment. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 2755–2761). Charles University in Prague.
  • Chaachoua, H., & Comiti, C. (2010). L’analyse du rôle des manuels dans l’approche anthropologique [Analysis of the role of textbooks in the anthropological approach]. In A. Bronner, M. Larguier, M. Artaud, M. Bosch, Y. Chevallard, G. Cirade & C. Ladage (Eds.), Diffuser les Mathématiques (et les Autres Savoirs) Comme Outils de Connaissance et d’Action [Disseminating Mathematics (and Other Knowledge) as a Tool for Knowledge and Action] (pp. 771–789). IUFM de l’Académie de Montpellier.
  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11. https://doi.org/10.1080/15248372.2012.725186
  • Chevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique [Fundamental concepts of didactics: perspectives from an anthropological approach]. Recherche en Didactique des Mathématiques, 12(1), 73–112.
  • Christou, C., Jones, K., Mousoulides, N., & Pittalis, M. (2006). Developing the 3Dmath dynamic geometry software: theoretical perspectives on design. International Journal for Technology in Mathematics Education, 13(4), 168–174. https://eprints.soton.ac.uk/42114/
  • Clements, D. H., & Battista, M. T. (1992). Geometry and Spatial Reasoning. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 420–464). Macmillan.
  • Eh Phon, D. N., Abdul Rahman, M. H., Utama, N. I., Bilal Ali, M., Dayana Abd Halim, N., & Kasim, S. (2019). The effect of augmented reality on spatial visualization ability of elementary school student. International Journal on Advanced Science Engineering Information Technology, 9(2), 624–629. https://doi.org/10.18517/ijaseit.8.5.4971
  • Ferdiánová, V. (2017). GeoGebra materials for LMS Moodle focused Monge on projection. Electronic Journal of e-Learning, 15(3), 259–268. https://files.eric.ed.gov/fulltext/EJ1146049.pdf
  • Gal, H., & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163–183. https://doi.org/10.1007/s10649-010-9232-y
  • Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107–125. https://doi.org/10.1016/j.jecp.2017.04.016
  • Guedes, K. B., Guimarães, M. de S., & Méxas, J. G. (2012). Virtual reality using stereoscopic vision for teaching/learning of descriptive geometry. In J. Valerdi, B. Kramer & S. White (Eds.), Proceeding of The Fourth International Conference on Mobile, Hybrid, and On-Line Learning (pp. 24–30). ThinkMind/IARIA.
  • Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th International Conference for the Psychology of Mathematics Education, vol.1 (pp. 3–19). Universitat de Valencia.
  • Hemmerling, M., & Lemberski, D. (2008). Anaglyph representation as medium for spatial design. In M. Muyelle (Ed.), Architecture “in Computro”: Integrating Methods and Techniques (pp. 209–214). The Higher Institute of Architectural Sciences.
  • Jančařík, A. (2016). Dynamic models using 3D projection. In J. Novotná & A. Jančařík (Eds.), Proceedings of the 15th European Conference on e-Learning (pp. 296–304). Academic Conferences and Publishing International Limited.
  • Jones, K. (2001). Spatial thinking and visualisation. In B. Barton (Ed.), Teaching and Learning Geometry 11-19 (pp. 55–56). Royal Society.
  • Kmetova, M. (2015). Rediscovered anaglyph in program GeoGebra. Acta Mathematica Nitriensia, 1(1), 86–91. https://doi.org/10.17846/amn.2015.1.1.86-91
  • Kösa, T. (2016). The effect of using dynamic mathematics software: Cross section and visualization. International Journal for Technology in Mathematics Education, 23(4), 121–128. https://doi.org/10.1564/tme_v23.4.01
  • Kwon, O. N., & Kim, S. H. (2002). Enhancing spatial visualization through virtual reality (VR) on the web: Software design and impact analysis. Journal of Computers in Mathematics and Science Teaching, 21(1), 17–31. https://www.learntechlib.org/p/10769/
  • Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. Bishop, M. K. Clements, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 237–269). Springer. https://doi.org/10.1007/978-94-010-0273-8_9
  • Leopold, C. (2015). Visual representations for spatial thinking. In L. Cocchiarella (Ed.), The visual language of technique (Vol. 3, pp. 37–56). Springer. https://doi.org/10.1007/978-3-319-05326-4_5
  • Lieban, D. (2019). Exploring opportunities for connecting physical and digital resources for mathematics teaching and learning [Doctoral dissertation]. Johannes Kepler University Linz, Linz.
  • Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729–751. https://doi.org/10.1080/15248372.2019.1653298
  • Lyon, D. R., Gunzelmann, G., & Krusmark, M. (2019). Path visualization: a method for objective measurement of spatial visualization. Spatial Cognition and Computation, 19(4), 309–333. https://doi.org/10.1080/13875868.2019.1643867
  • Mazman Akar, S. G. (2019). Does it matter being innovative: Teachers’ technology acceptance. Education and Information Technologies, 24(6), 3415–3432. https://doi.org/10.1007/s10639-019-09933-z
  • Méxas, J. G. F., Guedes, K. B., & Tavares, R. da S. (2015). Stereo orthogonal axonometric perspective for the teaching of descriptive geometry. Interactive Technology and Smart Education, 12(3), 222–240. https://doi.org/10.1108/itse-09-2014-0027
  • Mirzajani, H., Mahmud, R., Fauzi Mohd Ayub, A., & Wong, S. L. (2016). Teachers’ acceptance of ICT and its integration in the classroom. Quality Assurance in Education, 24(1), 26–40. https://doi.org/10.1108/qae-06-2014-0025
  • Mithalal, J., & Balacheff, N. (2019). The instrumental deconstruction as a link between drawing and geometrical figure. Educational Studies in Mathematics, 100(2), 161–176. https://doi.org/10.1007/s10649-018-9862-z
  • Mjenda, M., Mutarutinya, V., & Owiti, D. (2023). Assessing the effectiveness of computer-aided instructional techniques in enhancing students’ 3D geometry spatial visualization skills among secondary school students in Tanzania. International Journal of Learning, Teaching and Educational Research, 22(6), 613–637. https://doi.org/10.26803/ijlter.22.6.31
  • Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. Gero (Ed.) Studying Visual and Spatial Reasoning for Design Creativity (pp. 179–192). Springer. https://doi.org/10.1007/978-94-017-9297-4_10
  • Park, J., Kim, D. E., & Sohn, M. H. (2011). 3D simulation technology as an effective instructional tool for enhancing spatial visualization skills in apparel design. International Journal of Technology and Design Education, 21(4), 505–517. https://doi.org/10.1007/s10798-010-9127-3
  • Prieto, G., & Velasco, A. D. (2010). Does spatial visualization ability improve after studying technical drawing? Quality and Quantity, 44(5), 1015–1024. https://doi.org/10.1007/s11135-009-9252-9
  • Rodriguez, J., & Rodriguez-Velazquez, L. G. (2020). Predictive model for improvement of spatial visualization skills. In M. Auer, H. Hortsch, & P. Sethakul (Eds.), The Impact of the 4th Industrial Revolution on Engineering Education (Vol. 2, pp. 181–187). Springer. https://doi.org/10.1007/978-3-030-40271-6_19
  • Seah, R. (2015). Developing geometric reasoning abilities through visualisation. In J. Vincent, G. FitzSimons, & J. Steinle (Eds.), Maths rocks (pp. 136–143). Mathematical Asssociation of Victoria.
  • Susilawti, W., Suryadi, D., & Dahlan, J. A. (2017). The improvement of mathematical spatial visualization ability of student through cognitive conflict. International Electronic Journal of Mathematics Education, 12(2), 155–166. https://doi.org/10.29333/iejme/607
  • Tang, M. D. (2014). Une étude didactique des praxéologies de la representation en perspective dans la géométrie de l’espace, en France et au Viêt-Nam [A didactic study of the praxeologies of perspective representation in space geometry, in France and Vietnam] [Doctoral dissertation]. Université de Grenoble Alpes, Grenoble.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446
  • Weckbacher, L. M. (2007). The role of visualization in geometric problem solving (Publication No. 3285847) [Doctoral dissertation, University of California]. ProQuest Dissertations and Theses Global.
  • Yue, J. (2008). Spatial visualization by realistic 3D views. Engineering Design Graphics Journal, 72(1), 28–38. https://doi.org/10.18260/1-2--1619
  • Yurmalia, D., & Herman, T. (2021). Student visualization in solving geometry problem: The case of reflection. Journal of Physics: Conference Series, 1806(1), 012052. https://doi.org/10.1088/1742-6596/1806/1/012052

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.