Research perspectives of initial geometry education
Olivera J. Đokić 1 *
More Detail
1 University of Belgrade, Faculty of Education
* Corresponding Author

Abstract

The paper discusses the perspectives of teaching geometry based on the study The International Commission on Mathematical Instruction ICMI. Bearing in mind the current needs in geometry teaching, we considered that the topics of space and spatial reasoning should be part of it as key issues, as well as teaching approaches, RME, learning through (re)discovering mathematical ideas, the role of textbooks in the initial mathematics education, and so on. Therefore, this research paper offers a general insight into our need to deal with these topics, and invites researchers from the broader mathematical community, who we herewith familiarize with the results of our research in the sphere of initial geometry teaching in Serbia.

Keywords

References

  • Adler, J., & Sfard, A. (2016). Research for educational change - transforming researchers' insights into improvement in mathematics teaching and learning. London and New York: Routledge, Taylor & Francis Group.
  • Antonijević, R. (2007). Student attainment research areas: TIMSS 2007 and PISA 2006. Nastava i vaspitanje, 56(4), 373-386. [Антонијевић, Р. (2007). Области истраживања постигнућа ученика: TIMSS 2007 и PISA 2006. Настава и васпитање, 56(4), 373-386.]
  • Božić, M. (2012). PISA Tests and What Shall We Do. Nastava matematike, LVII(1-2), 1-11. [Божић, М. (2012). ПИСА тестови и шта нам је чинити. Настава математике, LVII(1-2), 1-11.]
  • Bruce, C. D., Sinclair, N., Moss, J., Hawes, Z., and Caswell, B. (2015). Spatializing the curriculum. In B. Davis and Spatial Reasoning Study Group (Eds.), Spatial Reasoning in the Early Years. Principles, Assertions, and Speculations (pp. 85-106). London and New York: Routledge, Taylor & Francis Group.
  • Bruner, J.S. (1966). Toward a theory of instruction. Cambridge, MA, US: Harvard University Press.
  • Cai, J., Mok, I. A. C., Reddy, V., & Stacey, K. (2016). International comparative studies in mathematics: Lessons for improving students’ learning. In G. Kaiser, (Series Еd.), Part of the series ICME-13 (pp. 1-36). Hamburg: Springer Open. doi: 10.1007/978-3-319-42414-9_1
  • Clements, D.H. & Battista, M.T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 420-464). New York: Macmillan Publishing Copmany.
  • Diezmann, C. M., Watters, J., & English, L. (2002). Teacher behaviours that influence young children’s reasoning. In A. D. Cockburn, & E. Nardi (Eds.). Learning from Learners. Proceedings 27th Annual Conference of the International Group for the Psychology of Mathematics, Norwich: University of East Anglia, UK, July 21-26, 2002 (pp. 289-296). Norwick, UK.
  • Dindyal, J. (2014). International Comparative Studies in Mathematics: An Overview. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 320-325). Dordrecht, Netherland: Springer Reference. doi: 10.1007/978-94-007-4978-8
  • Đokić, O. (2007). Formation of Concept of Line in Elementary School Geometry. Belgrade: Teacher Education Faculty. [Ђокић, О. (2007). Појам линије у почетној настави геометрије. Београд: Учитељски факултет.]
  • Đokić, O. (2014a). Realistic mathematics education in teaching and learning elementary geometry. Teaching Innovations, 27(2), 7-21. doi:10.5937/inovacije1402007D [Ђокић, О. (2014а). Реално окружење у почетној настави геометрије. Иновације у настави, 27(2), 7-21.]
  • Djokic, O. (2014b). RМЕ аs а Teaching Approach – A case study оf elementary geometry in Serbian innovative 4th-grade textbook. In K. Jones, C. Bokhove, & L. Fan (Eds.), Mathematics Textbook Research and Development. Proceedings of the International Conference on Mathematics Textbook Research and Development (ICMT-2014), University of Southampton, Southampton, GB, 29-31 July 2014 (pp. 203-208). Southampton: University of Southampton.
  • Đokić, O. (2015). The effects of RME and innovative textbook model on 4th grade pupils’ reasoning in geometry. In J. Novotná, & H. Moraová (Eds.), Developing mathematical language and reasoning. Proceedings of International Symposium Elementary Mathematics Teaching SEMT-2015, Charles University, Prague, Czech Republic, 16-21 August 2015 (pp. 107-117). Prague, Czech Republic: Charls University.
  • Đokić, O. (2017). Realistic mathematics education in teaching and learning elementary geometry. Belgrade: Teacher Education Faculty. [Ђокић, О. (2017). Реално окружење у почетној настави геометрије. Београд: Учитељски факултет.]
  • Đokić, O. & Zeljić, M. (2017). Theoretical frameworks of development geometrical thinking according to Van Hiele, Fischbein and Houdement-Kuzniak. Teme, XLI(3), 623-637. doi: 10.22190/TEME1703623D [Ђокић, О. и Зељић, М. (2017). Теорије развоја геометријског мишљења према Ван Хилу, Фишбајну и Удемон-Кузниаку. Теме, XLI(3), 623-637.]
  • Education, Audiovisual and Culture Executive Agency [EACEA]. (2011). Mathematics education in Europe: common challenges and national policies. Retrieved from https://doi.org/10.2797/72660
  • Fan, L., Zhu, Y. & Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM Mathematics Education. 45(5), 633-646. doi: 10.1007/s11858-013-0539-x
  • Fauzan, A. (2002). Applying Realistic Mathematics Education (RME) in Teaching Geometry in Indonesian primary schools. Enschede: Universiteit Twente.
  • Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in Mathematics, 1(1-2), 3-8.
  • Freudenthal, H. (1983). Major problems of mathematics education. In M. Zweng, T. Green, J. Kilpatrick, H. Pollak, & M. Suydam (Eds.), Fourth International Congress on Mathematical Education. Proceeedings of the Fourth International Congress on Mathematical Education, Berkeley, California, USA, August 10-16, 1980 (pp. 1-7). Boston, USA: Birkähuser Boston Inc.
  • Glejzer, G. D. (1997). School Geometry. Nastava matematike, 42(1-2), 1-6. [Глејзер, Г. Д. (1997). Геометрија у школи. Настава математике, 42(1-2), 1-6.]
  • Gravemeijer, K.P.E. (1994). Developing realistic mathematics education. Utrecht, Netherlands: CD-β Press / Freudenthal Institute.
  • Gutierrez, A., Kuzniak, A., & Straesser, R. (2005). Research on Geometrical Thinking. Retrieved from CERME 4 conference, WORKING GROUP 7 website: http://www.mathematik.uni-dortmund.de/~erme/CERME4/CERME4_WG7.pdf
  • Hershkowitz, R. (1998). About reasoning in geometry. In: C. Mammana and V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century - An ICMI Study (pp. 29-36). Springer Netherlands: Kluwer Academic Publishers.
  • Hiebert, J. & Carpenter, T. (1992). Learning and Teaching with Understanding. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 65-97). New York: Macmillan Publishing Copmany.
  • House, P. A. & Coxford, A. F. (Eds.) (1995). Connectig Mathematics across the Curriculum - NCTM Yearbook. Reston, Virginia: National Council of Teachers of Mathematics.
  • Jelić, M. & Đokić, O. (2017). Towards coherent structure of Mathematics textbooks – analysis of textbooks according to structural blocks of TIMSS research. Teaching Innovations, 30(1), 67˗81. DOI: 10.5937/inovacije1701067J [Јелић, М. и Ђокић, О. (2017). Ка кохерентној структури уџбеника математике – анализа уџбеника према структурним блоковима ТИМСС истраживања. Иновације у настави, 30(1), 67˗81.]
  • Korać, N. et al., (2007). The Quality of Textbooks for Younger School Age. Belgrade: Institute of Psychology. [Кораћ, Н. и сар. (2007). Квалитет уџбеника за млађи школски узраст. Београд: Институт за психологију.]
  • Kuzmanović, D. & Pavlović Babić, D. (2011). Approaches to Assessment of Student Academic Achievements: A Critical Review. Zbornik Instituta za pedagoška istraživanja, 43(1), 63-85. [Кузмановић, Д. и Павловић Бабић, Д. (2011). Приступи процењивању образовних постигнућа ученика - критички осврт. Зборник Института за педагошка истраживања, 43(1), 63-85.]
  • Manturov, O.V., Solncev, J.K., Sorkin, J.I., & Fedin, N.G. (1969). A Dictionary of Mathematical Terms with Interpretations. Belgrade: Naučna knjiga. [Manturov, O.V., Solncev, J.K., Sorkin, J.I., Fedin, N.G. (1969). Rečnik matematičkih termina sa tumačenjima. Beograd: Naučna knjiga.]
  • Mićić, V. (2005). Discovery learning - probably a new approach. Nastava matematike, L(4), 13-21. [Мићић, В. (2005). Учење откривањем – можда нови приступ. Настава математике, L(4), 13-21.]
  • Milinković, J., Đokić, O. & Dejić, M. (2008). Textbook Model as the Basis for Active Learning in Teaching Mathematics. Teaching Innovations, 21(1), 70–79. [Милинковић, Ј., Ђокић, О. и Дејић, М. (2008). Модел уџбеника као основе активног учења у настави математике. Иновације у настави, 21(1), 70–79.]
  • Ministarstvo prosvete (2006). Third Grade Students Academic Achievement – The National 2004 Testing. Belgrade, Serbia: Ministarstvo prosvete i sporta Republike Srbije i Zavod za vrednovanje kvaliteta obrazovanja i vaspitanja. [Министарство просвете (2006). Образовна постигнућа ученика трећег разреда - национално тестирање 2004. Београд, Србија: Министарство просвете и спорта Републике Србије и Завод за вредновање квалитета образовања и васпитања.]
  • Poincaré, H. (1905). Science and hypothesis. London and Newcastle-on-Cyne: The Walter Scott Publishing Co., Ltd New York.
  • Prenger, J. (2005). Construction of meaning in the mathematics classroom. Unpublished PhD thesis, University of Groningen, Groningen, Netherlands.
  • Resnick, L.B. & Ford, W.W. (1981). The psychology of mathematics instruction. Hillsdale, New Jersey: Lawrence Erlbaum Associates Publishers.
  • Romano, D. A. (2009). About Geometrical Thinking. Nastava matematike, 54(2-3), 1-11. [Романо, Д. А. (2009). О геометријском мишљењу. Настава математике, 54(2-3), 1-11.]
  • Sinclair, N., Bartolini Bussi, M. G., Villieres, M., Jones, K., Kortenkamp, U., Leung, A., and Owens, K. (2016). Recent Research on geometry education: an ICME-13 survey team report. ZDM Mathematics Education, 48(5), 691–719. doi 10.1007/s11858-016-0796-6
  • Sinclair, N., & Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM Mathematics Education, 47(3), 319–329. doi: 10.1007/s11858-015-0693-4
  • Sinclair, N., & Bruce, C. D. (2014). Spatial Reasoning for Young Learners. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.). Proceedings of the Joint Meeting of PME 38 and PME-NA 36, Vancouver, Canada, July 15-20, 2014 (Vol. 1, pp. 173-203). Vancouver, Canada: PME.
  • Skemp, R. (1986). The Psychology of Learning Mathematics. London: Penguin Books.
  • Steen, L. A. (1999). Тhe concluding chapter. In V. L. Stiff (Ed.), Developing Mathematical Reasoning in Grades K-12 - NCTM's Yearbook (pp. 270-285). Reston, VA: National Council of Teachers of Mathematics.
  • Tarr, J. E., Reys, R. E., Reys, B. J., Chavez, O., Shih, J. & Osterlind, S. J. (2008). The Impact of Middle-Grades Mathematics Curricula and Classroom Learning Environment of Student Achievement. Journal for Research in Mathematics Education, 39(3), 247-280.
  • Törnroos, J. (2005). Mathematics textbook, opportunity to learn and student achievement. Studies in Educational Evaluation, 31(4), 315–327. doi:10.1016/j.stueduc.2005.11.005
  • Trebješanin, B. (2001). Types and levels of knowledge in a contemporary textbook. In B. Trebješanin and D. Lazarević, (Eds.), A Contemporary Elementary School Textbook (pp. 69-78). Belgrade: Zavod za udžbenike i nastavna sredstva. [Требјешанин, Б. (2001). Врсте и нивои знања у савременом уџбенику. У Б. Требјешанин и Д. Лазаревић (ур.), Савремени основношколски уџбеник (стр. 69-78). Београд: Завод за уџбенике и наставна средства.]
  • Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics education. Dordrecht, Netherlands: Reidel.
  • Treffers, A. (1991). Realistic mathematics education in the Netherlands 1980-1990. In L. Streefland (Ed.), Realistic Mathematics Education in Primary School (pp. 11-20). Utrecht Netherlands: CD-β Press / Freudenthal Institute, Utrecht University.
  • Van den Heuvel-Panhuizen, M. (1996). Assessment and realistic mathematics education. Utrecht, Netherlands: CD-β Press / Freudenthal Institute, Utrecht University.
  • Van den Heuvel-Panhuizen, M. (2002). Realistic mathematics education as work in progress. In F. L. Lin (Ed.), Common Sense in Mathematics Education. Proceedings of 2001 The Netherlands and Taiwan Conference on Mathematics Education, Taipei, Taiwan, 19-23 November 2001 (pp. 1-43). Taipei, Taiwan: National Taiwan Normal University.
  • Villani, V. (1998). The way ahead. In C. Mammana and V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 319-327). Springer Netherlands: Kluwer Academic Publishers.
  • Woolfolk, A.E. (1998). Educational Psychology. Boston, MA: Allyn & Bacon.
  • Zavod za vrednovanje kvaliteta obrazovanja i vaspitanja (2011). General Achievement Standards - Educational Standards for the End of the First Cycle of Compulsory Education for the Subject Mathematics. Belgrade: Zavod za vrednovanje kvaliteta obrazovanja i vaspitanja. [Завод за вредновање квалитета образовања и васпитања (2011). Општи стандарди постигнућа – образовни стандарди за крај првог циклуса обавезног образовања за предмет Математика. Београд: Завод за вредновање квалитета образовања и васпитања.]

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.