Pedagogical incorporation of artificial intelligence in K-12 science education: A decadal bibliometric mapping and systematic literature review (2013-2023)
K. Kavitha 1, V. P. Joshith 1 *
More Detail
1 Department of Education, Central University of Kerala, India
* Corresponding Author

Abstract

Artificial intelligence (AI) technologies continue to revolutionize various sectors, including their incorporation into education, particularly in K-12 science education, which has become evidently significant. This paper presents a bibliometric analysis and systematic review that examines the incorporation of AI technologies in K-12 science education. A total of 20 studies, comprising journal articles and conference proceedings published between 2013 and 2023 and sourced from the Scopus database, were analyzed to identify leading journals, influential papers, and authors, and county-wise contributions. The study reveals that AI technologies, including robotics, chatbots, machine learning, automated scoring - feedback, and neural networks, have demonstrably enhanced learning outcomes, increased student engagement, and facilitated personalized education in science classrooms. Further, the review identifies diverse methodological approaches and pedagogical strategies, including hands-on learning, blended learning models, inquiry-based methods, and feedback-based learning, as practical means of incorporating AI within science classrooms. Moreover, the key findings emphasized the importance of professional development, infrastructure investment, and ethical guidelines to support equitable implementation of AI in science education. This study also advocates future research investigating long-term impacts, ethical considerations, and qualitative insights to fully understand AI's potential in enhancing K-12 science education.

Keywords

Supplementary Files

References

  • Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. In I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial intelligence applications and innovations: IFIP advances in information and communication technology (Vol. 584 pp. 373–383). Springer. https://doi.org/10.1007/978-3-030-49186-4_31
  • Ahmad, K., Iqbal, W., El-Hassan, A., Qadir, J., Benhaddou, D., Ayyash, M., & Al-Fuqaha, A. (2024). Data-driven artificial intelligence in education: a comprehensive review. IEEE Transactions on Learning Technologies, 17, 12–31. https://doi.org/10.1109/TLT.2023.3314610
  • Ait Baha, T., El Hajji, M., Es-Saady, Y., & Fadili, H. (2023). The impact of educational chatbot on student learning experience. Education and Information Technologies, 29, 10153–10176. https://doi.org/10.1007/s10639-023-12166-w
  • Ajani, O. A., Gamede, B., & Matiyenga, T. C. (2025). Leveraging artificial intelligence to enhance teaching and learning in higher education: Promoting quality education and critical engagement. Journal of Pedagogical Sociology and Psychology, 7(1), 54-69. https://doi.org/10.33902/jpsp.202528400
  • Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI and Ethics, 2(3), 431–440. https://doi.org/10.1007/s43681-021-00096-7
  • Al Darayseh, A. (2023). Acceptance of artificial intelligence in teaching science: Science teachers’ perspective. Computers and Education: Artificial Intelligence, 4, 100132. https://doi.org/10.1016/j.caeai.2023.100132
  • Alam, A. (2022). Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: reforming education in the age of artificial intelligence. In R.N. Shaw, S. Das, V. Piuri, & M. Bianchini (Eds.), Advanced computing and intelligent technologies: Lecture notes in electrical engineering (Vol. 914, pp. 395–406). Springer. (https://doi.org/10.1007/978-981-19-2980-9_32
  • Alam, A. (2023). Harnessing the power of Ai to create intelligent tutoring systems for enhanced classroom experience and improved learning outcomes. In G. Rajakumar, K. L. Du, & Á. Rocha (Eds.), Lecture notes on data engineering and communications technologies (Vol. 171, pp. 571–591). Springer. https://doi.org/10.1007/978-981-99-1767-9_42
  • Alfredo, R., Echeverria, V., Jin, Y., Yan, L., Swiecki, Z., Gašević, D., & Martinez-Maldonado, R. (2024). Human-centred learning analytics and AI in education: A systematic literature review. Computers and Education: Artificial Intelligence, 6, 100215. https://doi.org/10.1016/j.caeai.2024.100215
  • Ali, F., Choy, D., Divaharan, S., Tay, H. Y., & Chen, W. (2023). Supporting self-directed learning and self-assessment using TeacherGAIA, a generative AI chatbot application: Learning approaches and prompt engineering. Learning: Research and Practice, 9(2), 135–147. https://doi.org/10.1080/23735082.2023.2258886
  • Ali, O., Murray, P. A., Momin, M., Dwivedi, Y. K., & Malik, T. (2024). The effects of artificial intelligence applications in educational settings: Challenges and strategies. Technological Forecasting and Social Change, 199, 123076. https://doi.org/10.1016/j.techfore.2023.123076
  • Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: a comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://doi.org/10.3390/su151712983
  • Bano, S., Atif, K., & Mehdi, S. A. (2023). Systematic review: Potential effectiveness of educational robotics for 21st century skills development in young learners. Education and Information Technologies, 29, 11135-11153. https://doi.org/10.1007/s10639-023-12233-2
  • Baškarada, S., & Koronios, A. (2018). A philosophical discussion of qualitative, quantitative, and mixed methods research in social science. Qualitative Research Journal, 18(1), 2–21. https://doi.org/10.1108/QRJ-D-17-00042
  • Benitti, F. B. V., & Spolaôr, N. (2017). How have robots supported STEM teaching? M. Khine (Ed.), Robotics in STEM Education (pp. 103–129). Springer. https://doi.org/10.1007/978-3-319-57786-9_5
  • Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P., Chong, S. W., & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1), 4. https://doi.org/10.1186/s41239-023-00436-z
  • Bruner, Jerome. S. (2009). The Process of Education, Revised Edition. Harvard University Press.
  • Brusilovsky, P. (2024). AI in education, learner control, and human-ai collaboration. International Journal of Artificial Intelligence in Education, 34(1), 122–135. https://doi.org/10.1007/s40593-023-00356-z
  • Cao, X., Li, Z., & Zhang, R. (2021). Analysis on academic benchmark design and teaching method improvement under artificial intelligence robot technology. International Journal of Emerging Technologies in Learning, 16(05), 58. https://doi.org/10.3991/ijet.v16i05.20295
  • Carbonell, J. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. IEEE Transactions on Man Machine Systems, 11(4), 190–202. https://doi.org/10.1109/TMMS.1970.299942
  • Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: a systematic literature review. International Journal of STEM Education, 10(1), 29. https://doi.org/10.1186/s40594-023-00418-7
  • Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: a systematic review of research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y
  • Chang, C.-N., Lin, S., Kwok, O.-M., & Saw, G. K. (2023). Predicting STEM major choice: a machine learning classification and regression tree approach. Journal for STEM Education Research, 6(2), 358–374. https://doi.org/10.1007/s41979-023-00099-5
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: a review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
  • Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: designing chatbots to support student success. Information Systems Frontiers, 25(1), 161–182. https://doi.org/10.1007/s10796-022-10291-4
  • Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
  • Chng, E., Tan, A. L., & Tan, S. C. (2023). Examining the use of emerging technologies in schools: a review of artificial intelligence and immersive technologies in STEM Education. Journal for STEM Education Research, 6(3), 385–407. https://doi.org/10.1007/s41979-023-00092-y
  • Chu, S.-T., Hwang, G.-J., & Tu, Y.-F. (2022). Artificial intelligence-based robots in education: A systematic review of selected SSCI publications. Computers and Education: Artificial Intelligence, 3, 100091. https://doi.org/10.1016/j.caeai.2022.100091
  • Chuang, C.-H., Lo, J.-H., & Wu, Y.-K. (2023). Integrating chatbot and augmented reality technology into biology learning during COVID-19. Electronics, 12(1), 222. https://doi.org/10.3390/electronics12010222
  • Clark, T. M. (2023). Investigating the use of an artificial intelligence chatbot with general chemistry exam questions. Journal of Chemical Education, 100(5), 1905–1916. https://doi.org/10.1021/acs.jchemed.3c00027
  • Cooper, G. (2023). Examining science education in Chatgpt: an exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32(3), 444–452. https://doi.org/10.1007/s10956-023-10039-y
  • Creswell, J. W. & Clark, V. L. P. (2018). Designing and conducting mixed methods research. Sage.
  • Crompton, H., Jones, M. V., & Burke, D. (2024). Affordances and challenges of artificial intelligence in K-12 education: a systematic review. Journal of Research on Technology in Education, 56(3), 248–268. https://doi.org/10.1080/15391523.2022.2121344
  • D’Amico, A., Guastella, D., & Chella, A. (2020). A playful experiential learning system with educational robotics. Frontiers in Robotics and AI, 7, 33. https://doi.org/10.3389/frobt.2020.00033
  • Dave, D., Naik, H., Singhal, S., Dwivedi, R., & Patel, P. (2022). Explainable AI for ICT: system and software architecture. In M. Chaturvedi, P. Patel, & R. Yadav, R. (Eds.), Recent Advancements in ICT infrastructure and applications. Studies in infrastructure and control (pp. 189–208). Springer. https://doi.org/10.1007/978-981-19-2374-6_8
  • De Silva, D., Sierla, S., Alahakoon, D., Osipov, E., Yu, X., & Vyatkin, V. (2020). Toward intelligent industrial informatics: a review of current developments and future directions of artificial intelligence in industrial applications. IEEE Industrial Electronics Magazine, 14(2), 57–72. https://doi.org/10.1109/MIE.2019.2952165
  • Deák, C., Kumar, B., Szabó, I., Nagy, G., & Szentesi, S. (2021). Evolution of new approaches in pedagogy and stem with inquiry-based learning and post-pandemic scenarios. Education Sciences, 11(7), 319. https://doi.org/10.3390/educsci11070319
  • Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., & De Weerdt, J. (2021). A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Computers & Education, 162, 104094. https://doi.org/10.1016/j.compedu.2020.104094
  • Denes, G. (2023). A case study of using AI for General Certificate of Secondary Education (GCSE) grade prediction in a selective independent school in England. Computers and Education: Artificial Intelligence, 4, 100129. https://doi.org/10.1016/j.caeai.2023.100129
  • Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y. K., Mäntymäki, M., & Pappas, I. O. (2023). Artificial intelligence (AI) and information systems: Perspectives to responsible AI. Information Systems Frontiers, 25(1), 1–7. https://doi.org/10.1007/s10796-022-10365-3
  • Deveci Topal, A., Dilek Eren, C., & Kolburan Geçer, A. (2021). Chatbot application in a 5th grade science course. Education and Information Technologies, 26(5), 6241–6265. https://doi.org/10.1007/s10639-021-10627-8
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Doroudi, S. (2023). The intertwined histories of artificial intelligence and education. International Journal of Artificial Intelligence in Education, 33(4), 885–928. https://doi.org/10.1007/s40593-022-00313-2
  • Eguchi, A. (2017). Bringing robotics in classrooms. In M. Khine (Ed.), Robotics in STEM Education (pp. 3–31). Springer. https://doi.org/10.1007/978-3-319-57786-9_1
  • Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
  • Erduran, S. (2023). AI is transforming how science is done. Science education must reflect this change. Science, 382, 6677. https://doi.org/10.1126/science.adm9788
  • Essa, S. G., Celik, T., & Human-Hendricks, N. E. (2023). Personalized adaptive learning technologies based on machine learning techniques to identify learning styles: a systematic literature review. IEEE Access, 11, 48392–48409. https://doi.org/10.1109/ACCESS.2023.3276439
  • Feng, S., Magana, A. J., & Kao, D. (2021). A systematic review of literature on the effectiveness of intelligent tutoring systems in STEM. IEEE Frontiers in Education Conference, 2021, 1–9. https://doi.org/10.1109/FIE49875.2021.9637240
  • Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. International Journal of Qualitative Methods, 5(1), 80–92. https://doi.org/10.1177/160940690600500107
  • Ferrarelli, P., & Iocchi, L. (2021). Learning newtonian physics through programming robot experiments. Technology, Knowledge and Learning, 26(4), 789–824. https://doi.org/10.1007/s10758-021-09508-3
  • Fuhrmann, T., Ahmed, D. I., Arikson, L., Wirth, M., Miller, M. L., Li, E., Lam, A., Blikstein, P., & Riedel-Kruse, I. (2021). Scientific inquiry in middle schools by combining computational thinking, wet lab experiments, and liquid handling robots. In M.ç Roussou, & S. Shahid (Eds.), Interaction Design and Children Conference Proceedings (pp. 444–449). https://doi.org/10.1145/3459990.3465180
  • Gao, R., Merzdorf, H. E., Anwar, S., Hipwell, M. C., & Srinivasa, A. R. (2024). Automatic assessment of text-based responses in post-secondary education: A systematic review. Computers and Education: Artificial Intelligence, 6, 100206. https://doi.org/10.1016/j.caeai.2024.100206
  • Gil-Flores, J., Rodríguez-Santero, J., & Torres-Gordillo, J.-J. (2017). Factors that explain the use of ICT in secondary-education classrooms: The role of teacher characteristics and school infrastructure. Computers in Human Behavior, 68, 441–449. https://doi.org/10.1016/j.chb.2016.11.057
  • Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., Fuller, S., Singh, M., Arora, P., Parlikad, A. K., Stankovski, V., Abraham, A., Ghosh, S. K., Lutfiyya, H., Kanhere, S. S., Bahsoon, R., Rana, O., Dustdar, S., Sakellariou, R., Uhlig, S. & Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. Internet of Things and Cyber-Physical Systems, 4, 19–23. https://doi.org/10.1016/j.iotcps.2023.06.002
  • Göktepe Körpeoğlu, S., & Göktepe Yıldız, S. (2024). Using artificial intelligence to predict students’ STEM attitudes: an adaptive neural-network-based fuzzy logic model. International Journal of Science Education, 46(10), 1001–1026. https://doi.org/10.1080/09500693.2023.2269291
  • Göktepe Yıldız, S., & Göktepe Körpeoğlu, S. (2023). Prediction of students’ perceptions of problem solving skills with a neuro-fuzzy model and hierarchical regression method: A quantitative study. Education and Information Technologies, 28(7), 8879–8917. https://doi.org/10.1007/s10639-022-11446-1
  • Gonzalez, V. H., Mattingly, S., Wilhelm, J., & Hemingson, D. (2024). Using artificial intelligence to grade practical laboratory examinations: Sacrificing students’ learning experiences for saving time? Anatomical Sciences Education, 17(5), 932–936. https://doi.org/10.1002/ase.2360
  • Gruetzemacher, R., & Whittlestone, J. (2022). The transformative potential of artificial intelligence. Futures, 135, 102884. https://doi.org/10.1016/j.futures.2021.102884
  • Guan, C., Mou, J., & Jiang, Z. (2020). Artificial Intelligence Innovation in Education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134–147. https://doi.org/10.1016/j.ijis.2020.09.001
  • Habbal, A., Ali, M. K., & Abuzaraida, M. A. (2024). Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions. Expert Systems with Applications, 240, 122442. https://doi.org/10.1016/j.eswa.2023.122442
  • Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
  • Hahn, M. G., Navarro, S. M. B., De La Fuente Valentin, L., & Burgos, D. (2021). A systematic review of the effects of automatic scoring and automatic feedback in educational settings. IEEE Access, 9, 108190–108198. https://doi.org/10.1109/ACCESS.2021.3100890
  • Haudek, K. C., & Zhai, X. (2023). Examining the effect of assessment construct characteristics on machine learning scoring of scientific argumentation. International Journal of Artificial Intelligence in Education. Advance Online Publication. https://doi.org/10.1007/s40593-023-00385-8
  • Heeg, D. M., & Avraamidou, L. (2023). The use of Artificial intelligence in school science: a systematic literature review. Educational Media International, 60(2), 125–150. https://doi.org/10.1080/09523987.2023.2264990
  • Herdliska, A., & Zhai, X. (2023). Artificial intelligence-based scientific inquiry (4591628). SSRN. https://doi.org/10.2139/ssrn.4591628
  • Hof, B. (2021). The turtle and the mouse: how constructivist learning theory shaped artificial intelligence and educational technology in the 1960s. History of Education, 50(1), 93–111. https://doi.org/10.1080/0046760X.2020.1826053
  • Hopcan, S., Polat, E., Ozturk, M. E., & Ozturk, L. (2023). Artificial intelligence in special education: a systematic review. Interactive Learning Environments, 31(10), 7335–7353. https://doi.org/10.1080/10494820.2022.2067186
  • Howard, J. (2019). Artificial intelligence: Implications for the future of work. American Journal of Industrial Medicine, 62(11), 917–926. https://doi.org/10.1002/ajim.23037
  • Hrastinski, S. (2019). What do we mean by blended learning? TechTrends, 63(5), 564–569. https://doi.org/10.1007/s11528-019-00375-5
  • Huang, A. Y. Q., Lu, O. H. T., & Yang, S. J. H. (2023). Effects of artificial Intelligence–Enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194, 104684. https://doi.org/10.1016/j.compedu.2022.104684
  • Humble, N., & Mozelius, P. (2022). The threat, hype, and promise of artificial intelligence in education. Discover Artificial Intelligence, 2(1), 22. https://doi.org/10.1007/s44163-022-00039-z
  • Hwang, G.-J., & Chang, C.-Y. (2023). A review of opportunities and challenges of chatbots in education. Interactive Learning Environments, 31(7), 4099–4112. https://doi.org/10.1080/10494820.2021.1952615
  • Hwang, G.-J., & Tu, Y.-F. (2021). Roles and research trends of artificial intelligence in mathematics education: a bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/10.3390/math9060584
  • Ivankova, N. V., Creswell, J. W., & Stick, S. L. (2006). Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice. Field Methods, 18(1), 3–20. https://doi.org/10.1177/1525822X05282260
  • Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2023). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456. https://doi.org/10.1016/j.eswa.2022.119456
  • Jia, F., Sun, D., & Looi, C. (2024). Artificial Intelligence in Science Education (2013–2023): Research Trends in Ten Years. Journal of Science Education and Technology, 33(1), 94–117. https://doi.org/10.1007/s10956-023-10077-6
  • Kabudi, T. M. (2022). Artificial Intelligence for Quality Education: Successes and Challenges for AI in Meeting SDG4. In Y. Zheng, P. Abbott, & J. A. Robles-Flores (Eds.), Freedom and Social Inclusion in a Connected World (pp. 347–362). Springer International Publishing. https://doi.org/10.1007/978-3-031-19429-0_21
  • Kálózi-Szabó, C., Mohai, K., & Cottini, M. (2022). Employing Robotics in Education to Enhance Cognitive Development—A Pilot Study. Sustainability, 14(23), 15951. https://doi.org/10.3390/su142315951
  • Kavitha, K., & Joshith, V. P. (2024). The Transformative Trajectory of Artificial Intelligence in Education: The Two Decades of Bibliometric Retrospect. Journal of Educational Technology Systems. https://doi.org/10.1177/00472395241231815
  • Kavitha, K., Joshith, V. P., Rajeev, N. P., & S, A. (2024). Artificial Intelligence in Higher Education: A Bibliometric Approach. European Journal of Educational Research, volume-13-2024(volume-13-issue-3-july-2024), 1121–1137. https://doi.org/10.12973/eu-jer.13.3.1121
  • Khanna, A., Pandey, B., Vashishta, K., Kalia, K., Pradeepkumar, B., & Das, T. (2015). A Study of Today’s A.I. through Chatbots and Rediscovery of Machine Intelligence. International Journal of U- and e-Service, Science and Technology, 8(7), 277–284. https://doi.org/10.14257/ijunesst.2015.8.7.28
  • Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
  • Kim, J. (2024). Leading teachers’ perspective on teacher-AI collaboration in education. Education and Information Technologies, 29(7), 8693–8724. https://doi.org/10.1007/s10639-023-12109-5
  • Koltovskaia, S. (2020). Student engagement with automated written corrective feedback (AWCF) provided by Grammarly: A multiple case study. Assessing Writing, 44, 100450. https://doi.org/10.1016/j.asw.2020.100450
  • Korkmaz, C., & Correia, A.-P. (2019). A review of research on machine learning in educational technology. Educational Media International, 56(3), 250–267. https://doi.org/10.1080/09523987.2019.1669875
  • Kurni, M., Mohammed, M. S., & Srinivasa, K. G. (2023). Predictive Analytics in Education. In A Beginner’s Guide to Introduce Artificial Intelligence in Teaching and Learning (pp. 55–81). Springer International Publishing. https://doi.org/10.1007/978-3-031-32653-0_4
  • Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 56. https://doi.org/10.1186/s41239-023-00426-1
  • Lam, P. L. C., NG, H. K. Y., TSE, A. H. H., Lu, M., & Wong, B. Y. W. (2021). eLearning technology and the advancement of practical constructivist pedagogies: Illustrations from classroom observations. Education and Information Technologies, 26(1), 89–101. https://doi.org/10.1007/s10639-020-10245-w
  • Lee, D., & Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers & Education, 191, 104646. https://doi.org/https://doi.org/10.1016/j.compedu.2022.104646
  • Lee, I., & Perret, B. (2022). Preparing High School Teachers to Integrate AI Methods into STEM Classrooms. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12783–12791. https://doi.org/10.1609/aaai.v36i11.21557
  • Liang, J.-C., Hwang, G.-J., Chen, M.-R. A., & Darmawansah, D. (2023). Roles and research foci of artificial intelligence in language education: an integrated bibliographic analysis and systematic review approach. Interactive Learning Environments, 31(7), 4270–4296. https://doi.org/10.1080/10494820.2021.1958348
  • Lin, C.-C., Huang, A. Y. Q., & Lu, O. H. T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments, 10(1), 41. https://doi.org/10.1186/s40561-023-00260-y
  • Liu, J., Kong, X., Xia, F., Bai, X., Wang, L., Qing, Q., & Lee, I. (2018). Artificial intelligence in the 21st century. IEEE Access, 6, 34403–34421. https://doi.org/10.1109/ACCESS.2018.2819688
  • Liu, O. L., Rios, J. A., Heilman, M., Gerard, L., & Linn, M. C. (2016). Validation of automated scoring of science assessments. Journal of Research in Science Teaching, 53(2), 215–233. https://doi.org/10.1002/tea.21299
  • Lu, Y., Xu, Y., & Zhu, X. (2021). Designing and Implementing VR2E2C, a Virtual Reality Remote Education for Experimental Chemistry System. Journal of Chemical Education, 98(8), 2720–2725. https://doi.org/10.1021/acs.jchemed.1c00439
  • Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J. H., Ogata, H., Baltes, J., Guerra, R., Li, P., & Tsai, C.-C. (2020). Challenges and Future Directions of Big Data and Artificial Intelligence in Education. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580820
  • Maciejewski, M. L. (2020). Quasi-experimental design. Biostatistics & Epidemiology, 4(1), 38–47. https://doi.org/10.1080/24709360.2018.1477468
  • Magalhães, R., Veloso, B., Marcondes, F. S., Lima, H., Durães, D., & Novais, P. (2023). A Conversational Agent for Smart Schooling A Case Study on K-12 Dropout Risk Assessment (pp. 124–134). https://doi.org/10.1007/978-3-031-36957-5_11
  • Mayub, A., Setiawan, A., Fahmizal, F., Wardaya, R. W., Lazfihma, L., Johan, H., & Nursaadah, E. (2023). The Effect of Robotics Experiments on the Scientific Literacy of Junior High School Students in Bengkulu Province. Jurnal Pendidikan IPA Indonesia, 12(4). https://doi.org/10.15294/jpii.v12i4.44991
  • Mehra, A., Gupta, O., & Avikal, S. (2023). Finding the combined effect of academic and non-academic performance on management students’ placement: A fuzzy logic approach. The International Journal of Management Education, 21(3), 100837. https://doi.org/10.1016/j.ijme.2023.100837
  • Mhlanga, D. (2023). Open AI in Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning (pp. 387–409). https://doi.org/10.1007/978-3-031-37776-1_17
  • Minn, S. (2022). AI-assisted knowledge assessment techniques for adaptive learning environments. Computers and Education: Artificial Intelligence, 3, 100050. https://doi.org/10.1016/j.caeai.2022.100050
  • Mirmotahari, O., Berg, Y., Gjessing, S., Fremstad, E., & Damsa, C. (2019). A case-study of automated feedback assessment. IEEE Global Engineering Education Conference, 2019, 1190–1197. https://doi.org/10.1109/EDUCON.2019.8725249
  • Mize, T. D., & Manago, B. (2022). The past, present, and future of experimental methods in the social sciences. Social Science Research, 108, 102799. https://doi.org/10.1016/j.ssresearch.2022.102799
  • Mizumoto, A., & Eguchi, M. (2023). Exploring the potential of using an AI language model for automated essay scoring. Research Methods in Applied Linguistics, 2(2), 100050. https://doi.org/10.1016/j.rmal.2023.100050
  • Mnguni, L. (2023). A critical reflection on the affordances of web 3.0 and artificial intelligence in life sciences education. Journal of Pedagogical Sociology and Psychology, 5(2), 1-9. https://doi.org/10.33902/jpsp.202322298
  • Mohamed Shaffril, H. A., Samsuddin, S. F., & Abu Samah, A. (2021). The ABC of systematic literature review: the basic methodological guidance for beginners. Quality & Quantity, 55(4), 1319–1346. https://doi.org/10.1007/s11135-020-01059-6
  • Mukhopadhyay, S. C., Tyagi, S. K. S., Suryadevara, N. K., Piuri, V., Scotti, F., & Zeadally, S. (2021). Artificial Intelligence-Based Sensors for Next Generation IoT Applications: A Review. IEEE Sensors Journal, 21(22), 24920–24932. https://doi.org/10.1109/JSEN.2021.3055618
  • Mutovkina, N. (2021). Chatbots as a Tool to Optimize the Educational Process (pp. 15–25). https://doi.org/10.1007/978-3-030-80531-9_2
  • Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ trust in AI-powered educational technology and a professional development program to improve it. British Journal of Educational Technology, 53(4), 914–931. https://doi.org/10.1111/bjet.13232
  • Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B.-P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221–4241. https://doi.org/10.1007/s10639-022-11316-w
  • Nigam, A., Pasricha, R., Singh, T., & Churi, P. (2021). A Systematic Review on AI-based Proctoring Systems: Past, Present and Future. Education and Information Technologies, 26(5), 6421–6445. https://doi.org/10.1007/s10639-021-10597-x
  • Nightingale, A. (2009). A guide to systematic literature reviews. Surgery (Oxford), 27(9), 381–384. https://doi.org/10.1016/j.mpsur.2009.07.005
  • Omari, S., Mamane, A., Daoui, A., Ouahi, M. Ben, & Benjelloun, N. (2023a). Investigating the Effect of a Proposed Educational Robot on Students‘ Motivation and Learning of Thermodynamic Concepts. International Journal of Information and Education Technology, 13(7), 1085–1093. https://doi.org/10.18178/ijiet.2023.13.7.1908
  • Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 100020. https://doi.org/https://doi.org/10.1016/j.caeai.2021.100020
  • Ouyang, F., Dinh, T. A., & Xu, W. (2023). A Systematic Review of AI-Driven Educational Assessment in STEM Education. Journal for STEM Education Research, 6(3), 408–426. https://doi.org/10.1007/s41979-023-00112-x
  • Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of Artificial Intelligence Performance Prediction and Learning Analytics to Improve Student Learning in Online Engineering course. International Journal of Educational Technology in Higher Education, 20(1), 4. https://doi.org/10.1186/s41239-022-00372-4
  • Owoc, M. L., Sawicka, A., & Weichbroth, P. (2021). Artificial Intelligence Technologies in Education: Benefits, Challenges and Strategies of Implementation. https://doi.org/10.1007/978-3-030-85001-2_4
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003
  • Pedaste, M., & Altin, H. (2020). Does Inquiry-based Education Using Robots Have an Effect on Learners’ Inquiry Skills, Subject Knowledge and Skills, and Motivation? International Journal on Advanced Science, Engineering and Information Technology, 10(4), 1403–1409. https://doi.org/10.18517/ijaseit.10.4.12766
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
  • Pérez, J. Q., Daradoumis, T., & Puig, J. M. M. (2020). Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6), 1549–1565. https://doi.org/10.1002/cae.22326
  • Piaget, J. (1973). To Understand is to Invent: The Future of Education. United Kingdom. https://unesdoc.unesco.org/ark:/48223/pf0000006133
  • Ponnusamy, P., Ghias, A. R., Yi, Y., Yao, B., Guo, C., & Sarikaya, R. (2021). Feedback‐based self‐learning in large‐scale conversational AI agents. AI Magazine, 42(4), 43–56. https://doi.org/10.1609/aaai.12025
  • Pulsiri, N., & Vatananan-Thesenvitz, R. (2018). Improving Systematic Literature Review with Automation and Bibliometrics. 2018 Portland International Conference on Management of Engineering and Technology (PICMET), 1–8. https://doi.org/10.23919/PICMET.2018.8481746
  • Putu Krisna Dewi, I Gusti Ayu Tri Agustiana, & Putu Ari Dharmayanti. (2023). The Experimental-Based Visual Auditory Kinesthetic (Vak) Learning Model Improves Elementary School Science Learning Outcomes. Mimbar Ilmu, 28(1), 138–146. https://doi.org/10.23887/mi.v28i1.59283
  • Ramadevi, J., Sushama, C., Balaji, K., Talasila, V., Sindhwani, N., & Mukti. (2023). AI enabled value-oriented collaborative learning: Centre for innovative education. The Journal of High Technology Management Research, 34(2), 100478. https://doi.org/10.1016/j.hitech.2023.100478
  • Rawassizadeh, R., Sen, T., Kim, S. J., Meurisch, C., Keshavarz, H., Mühlhäuser, M., & Pazzani, M. (2019). Manifestation of virtual assistants and robots into daily life: vision and challenges. CCF Transactions on Pervasive Computing and Interaction, 1(3), 163–174. https://doi.org/10.1007/s42486-019-00014-1
  • Richey, R. C., & Klein, J. D. (2014). Design and Development Research. In Handbook of Research on Educational Communications and Technology (pp. 141–150). Springer New York. https://doi.org/10.1007/978-1-4614-3185-5_12
  • Rodrigues, L., Guerino, G., Silva, T. E. V., Challco, G. C., Oliveira, L., da Penha, R. S., Melo, R. F., Vieira, T., Marinho, M., Macario, V., Bittencourt, I. I., Dermeval, D., & Isotani, S. (2024). MathAIde: A Qualitative Study of Teachers’ Perceptions of an ITS Unplugged for Underserved Regions. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-024-00397-y
  • Sanfilippo, F., Tigano, S., Palumbo, G. J., Astuto, M., & Murabito, P. (2020). Importance of inclusion criteria in systematic reviews. British Journal of Anaesthesia, 125(5), e398–e399. https://doi.org/10.1016/j.bja.2020.07.010
  • Sarker, I. H. (2021). Machine learning: Algorithms, Real-world applications and research directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
  • Schiff, D. (2022). Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. International Journal of Artificial Intelligence in Education, 32(3), 527–563. https://doi.org/10.1007/s40593-021-00270-2
  • Schiff, D., Borenstein, J., Biddle, J., & Laas, K. (2021). AI Ethics in the Public, Private, and NGO Sectors: A Review of a Global Document Collection. IEEE Transactions on Technology and Society, 2(1), 31–42. https://doi.org/10.1109/TTS.2021.3052127
  • Schmidhuber, J. (2007). 2006: Celebrating 75 years of AI - History and Outlook: the Next 25 Years. http://arxiv.org/abs/0708.4311
  • Shah, D., Patel, D., Adesara, J., Hingu, P., & Shah, M. (2021). Exploiting the Capabilities of Blockchain and Machine Learning in Education. Augmented Human Research, 6(1), 1. https://doi.org/10.1007/s41133-020-00039-7
  • Shi, Y., & Rao, L. (2022). Construction of STEAM Graded Teaching System Using Backpropagation Neural Network Model under Ability Orientation. Scientific Programming, 2022, 1–9. https://doi.org/10.1155/2022/7792943
  • Singh, P., Kapoor, I., & Goyal, A. (2023). Educational Software System For Teaching STEM To Visually Impaired People. Journal of Physics: Conference Series, 2570(1), 012030. https://doi.org/10.1088/1742-6596/2570/1/012030
  • Slimi, Z. (2021). The Impact of AI Implementation in Higher Education on Educational Process Future: A Systematic Review. https://doi.org/10.21203/rs.3.rs-1081043/v1
  • Solomonoff, G. (2023, May 20). The meeting of the minds that launched AI. IEEE Spectrum.
  • Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001
  • Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Harnessing the power of AI to education. In K. G. Srinivasa, M. Kurni, & K. Saritha (Eds.), Learning, teaching, and assessment methods for contemporary learners: pedagogy for the digital generation (pp. 311–342). Springer. https://doi.org/10.1007/978-981-19-6734-4_13
  • Timms, M. J. (2016). Letting artificial intelligence in education out of the box: educational cobots and smart classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701–712. https://doi.org/10.1007/s40593-016-0095-y
  • Triansyah, F. A., Muhammad, I., Rabuandika, A., Siregar, K. D. P., Teapon, N., & Assabana, M. S. (2023). Bibliometric analysis: artificial intelligence (AI) in high school education. Jurnal Imiah Pendidikan Dan Pembelajaran, 7(1), 112–123. https://doi.org/10.23887/jipp.v7i1.59718
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, LIX(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433
  • van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7
  • van Leeuwen, T. (2006). The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics, 66(1), 133–154. https://doi.org/10.1007/s11192-006-0010-7
  • Vygotsky, S. (2012). Thought and Language, Revised and Expanded Edition. MIT Press.
  • Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167
  • Weizenbaum, J. (1983). ELIZA — A computer program for the study of natural language communication between man and machine. Communications of the ACM, 26(1), 23–28. https://doi.org/10.1145/357980.357991
  • White, R. T., & Arzi, H. J. (2005). Longitudinal studies: designs, validity, practicality, and value. Research in Science Education, 35(1), 137–149. https://doi.org/10.1007/s11165-004-3437-y
  • Wilson, J., Ahrendt, C., Fudge, E. A., Raiche, A., Beard, G., & MacArthur, C. (2021). Elementary teachers’ perceptions of automated feedback and automated scoring: Transforming the teaching and learning of writing using automated writing evaluation. Computers & Education, 168, 104208. https://doi.org/10.1016/j.compedu.2021.104208
  • Wu, R., & Yu, Z. (2024). Do AI chatbots improve students learning outcomes? Evidence from a meta‐analysis. British Journal of Educational Technology, 55(1), 10–33. https://doi.org/10.1111/bjet.13334
  • Xu, W., & Ouyang, F. (2022). The application of AI technologies in STEM education: a systematic review from 2011 to 2021. International Journal of STEM Education, 9(1), 59. https://doi.org/10.1186/s40594-022-00377-5
  • Yang, J., & Zhang, B. (2019). Artificial intelligence in intelligent tutoring robots: a systematic review and design guidelines. Applied Sciences, 9(10), 2078. https://doi.org/10.3390/app9102078
  • Yannier, N., Hudson, S. E., & Koedinger, K. R. (2020). Active learning is about more than hands-on: a mixed-reality AI system to support STEM education. International Journal of Artificial Intelligence in Education, 30(1), 74–96. https://doi.org/10.1007/s40593-020-00194-3
  • Yen-Ting Lin, Y.-T. L., & Yen-Ting Lin, J.-H. Y. (2023). Development of an educational chatbot system for enhancing students’ biology learning performance. Journal of Internet Tecvhnology, 24(2), 275–281. https://doi.org/10.53106/160792642023032402006
  • Zahid Iqbal, M., & Campbell, A. G. (2023). AGILEST approach: Using machine learning agents to facilitate kinesthetic learning in STEM education through real-time touchless hand interaction. Telematics and Informatics Reports, 9, 100034. https://doi.org/10.1016/j.teler.2022.100034
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
  • Zhai, X., He, P., & Krajcik, J. (2022). Applying machine learning to automatically assess scientific models. Journal of Research in Science Teaching, 59(10), 1765–1794. https://doi.org/10.1002/tea.21773
  • Zhai, X., Yin, Y., Pellegrino, J. W., Haudek, K. C., & Shi, L. (2020). Applying machine learning in science assessment: a systematic review. Studies in Science Education, 56(1), 111–151. https://doi.org/10.1080/03057267.2020.1735757
  • Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025
  • Zhang, P., & Tur, G. (2024). A Systematic Review of ChatGPT Use in K‐12 education. European Journal of Education, 59(2). https://doi.org/10.1111/ejed.12599
  • Zhu, J., & Liu, W. (2020). A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321–335. https://doi.org/10.1007/s11192-020-03387-8
  • Zhu, M., Lee, H.-S., Wang, T., Liu, O. L., Belur, V., & Pallant, A. (2017). Investigating the impact of automated feedback on students’ scientific argumentation. International Journal of Science Education, 39(12), 1648–1668. https://doi.org/10.1080/09500693.2017.1347303

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.