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The study aims to define the processes of pre-service mathematics teachers in reaching spatial 
visualisation generalisations within the context of drawing surface nets of solids. Two theories, Polya’s 
problem-solving steps and novice-to-expert problem-solving schemas, were used as reference frameworks 
to describe the participants' spatial visualisation generalisation processes. The research methodology 
employed in this study was a qualitative theory-testing case study design, in which hypotheses based on 
those two theories were generated and tested. The sample consisted of 44 participants who completed 
low- and high-complexity spatial visualisation drawing tasks and attended task-based interviews. The 
findings obtained by qualitative data and verified with quantitative data revealed participants’ problem-
solving processes involved a series of steps, including the creation of a mental representation of the 
problem situation (comprehending the configuration and the requirements of the task), devising an 
appropriate strategy to unfold the surface of the solid, implementing the strategy enabling to draw one of 
the nets of the solid, and finally evaluating the accuracy of the net drawing representing the opened 
surface of the solid. The participants’ three developmental spatial visualisation stages (novice, competent, 
and expert) were identified based on their spatial visualisation problem-solving performances in low- and 
high-complexity tasks.         
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1. Introduction 

If an organism is rewarded for a precise response to a specific stimulus, it will probably generate a 
comparable reaction when confronted with stimuli that bear similar characteristics (Cheng & 
Spetch, 2002). This phenomenon is known as stimulus generalisation (Cheng & Spetch, 2002). In 
computer games, players controlling the character’s movement within a virtual space can advance 
to the next level by making generalisations of a sequence of stimuli encountered throughout a 
level. The literature on spatial skills highlights an intriguing finding: novice learners often adopt 
trial-and-error methods to solve spatial tasks, while those with expertise rely on spatial 
generalisations. Despite the extensive research on spatial skills, spatial generalisations have 
received relatively scant attention in the literature. That underscores the need to comprehensively 
explore spatial generalisations’ role in developing spatial skills. In their recent study, Manivannan 
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et al. (2022) proposed a generalisation process regarding spatial orientation based on data about 
mapping spatial relations in an area by human subjects’ distorted, incomplete, complete, or 
accurate drawings with or without metric features. According to Barbosa and Vale’s research 
(2015), the process of generalising shape patterns involves several steps, such as identifying 
individual sets of elements that constitute the initial figure, determining intersecting sub-sets of 
these element sets, and recognising the involvement of certain elements more than once and then 
removing them. The current study describes the generalisation of pre-service teachers’ spatial 
visualisation process in the context of drawing the solids’ nets, which has not been previously 
explored in the realm of spatial generalisation research. 

Spatial visualisation is defined as the cognitive ability of the human brain to perceive, generate, 
and manipulate two- or three-dimensional (2D or 3D) models, virtual images, or objects and store 
them in long-term memory. This ability is fundamental to many fields, including engineering, 
architecture, and mathematics. To evaluate learners’ spatial visualisation skills, professionals use 
tasks that require visualising the images obtained after rotating or cutting shapes or solids or 
unfolding the surfaces of solids (Markopoulos et al., 2015). Tasks that involve obtaining surface 
development of solids and vice versa are commonly known as spatial visualisation tasks. 
However, dealing with such tasks requires the activation and utilisation of various cognitive skills, 
including spatial visualisation, spatial reasoning, and geometric thinking. Spatial visualisation and 
reasoning enable us to mentally represent the spatial relationships between solids and their 
components and the changes that occur when certain sequential transformations are applied to 
them. These processes of representation and transformation are intricately linked to mathematics, 
as highlighted in the research conducted by Lowrie et al. (2020). 

Those who perform well on spatial tasks also tend to perform well on mathematics ability tests 
(Lowrie et al., 2017). These findings, along with evidence, suggest the same neural pathways are 
activated during spatial and numerical tasks, which have resulted in an increased interest in 
developing spatial skills to improve math performance and enhance the learning experience for 
individuals at all levels (Lowrie et al., 2017; Otumfuor & Carr, 2017). Research suggests that 
educators with advanced spatial skills are better equipped to communicate mathematical concepts 
to their students by utilising visual and spatial representations in their instructional methods 
(Otumfuor & Carr, 2017). Students’ endeavours to enhance their spatial and mathematical thinking 
abilities may inadvertently be impeded by mathematics teachers who lack an understanding of the 
intercourse between spatial and mathematical teaching approaches and have not developed 
adequate proficiency in spatial tasks (Otumfuor & Carr, 2017). Acquiring insightful information on 
the levels of expertise and spatial generalisation processes of pre-service teachers is highly 
valuable for mathematics teacher training programs. This data can be utilised to establish a deeper 
connection between mathematics and spatial content and to integrate theories on spatial skills in 
the pedagogy of mathematics instruction. By adopting spatial-pedagogical approaches, it is 
possible to train expert teachers capable of effectively teaching mathematics to their students. 

The present study aims to define the processes of pre-service mathematics teachers in reaching 
spatial generalisations within the context of drawing surface nets of solids. The theoretical 
frameworks concerning the construction of expert problem-solving schemas serve as a guide to 
examine this process. In alignment with the research’s overarching aim, the two questions were 
sought to answer: 

RQ 1) What spatial visualisation problem-solving steps do participants experience throughout 
their problem-solving processes? 

RQ 2) What developmental stages do pre-service mathematics teachers’ spatial visualisation 
processes follow? 
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1.1. Theoretical Considerations 

A problem-solving schema serves as a well-organized framework or cognitive model that develops 
and adapts through an individual’s experiences with mental, cognitive, spatial, and mathematical 
processes (Marshall, 1995). The schema allows to organize one’s experiences in such a way that a 
new similar experience can easily be recognized and dealt with successfully (Cadez & Kolar, 2015). 
A new experience is assimilated into an existing schema, or an existing schema is modified to 
accommodate the new experience (Cadez & Kolar, 2015). Generalisation, allowing the individual 
to abstract solutions from specific cases and apply them to similar situations, contributes to the 
development of problem-solving schemas by enabling the individual to tackle new problems by 
applying previously learned strategies (Kalyuga & Hanham, 2011). During the generalisation of 
the problem-solving process, learners encounter several challenges, caused from inadequate prior 
knowledge, relying on specific examples or memorized procedures, the complexity of new 
problems, misunderstandings and misconceptions and make several generalisation mistakes, 
compassing overgeneralisation, inadequate generalisation, focus on surface features, 
misinterpretation of patterns and failure to reflect on errors. The implementation of schema-based 
education, which considers the challenges encountered by students and encompasses effective, 
level-appropriate instructions, can be realized by understanding the nature of their learning and 
problem-solving processes (Jung et al., 2022).  

Problem-solving, a structured process, is not just about finding the correct answer but also 
about the thinking process that fosters a profound comprehension of mathematical concepts 
through a systematic approach to learning. Polya (2004) framed learners’ problem-solving 
processes in a four-step systematic and organized model, including (a) understanding the 
problem, (b) developing strategies, (c) applying the chosen strategy and (d) revising or evaluating 
the solution. Polya (2004) eloquently articulated the dynamic nature of problem-solving, 
emphasizing the evolution of learners’ perception of a problem as they progress toward finding a 
solution. He emphasized that learners’ initial understanding of the problem often contains gaps, 
yet becomes enriched and transformed as they navigate through the various stages of problem-
solving. Polya underscored the pivotal role of each stage in the successful resolution of a problem, 
shedding light on the intricate and evolving process of problem-solving (Turkoglu & Yalcınalp, 
2024). 

The need to teach learners how to develop expertise in problem-solving is guided to investigate 
the behavioral patterns of novice and expert problem-solvers (Ericsson, 2006; Ngu & Phan, 2022). 
The development of problem-solving schemas is a key factor in the transition from novice to 
expert problem-solving abilities. Experts with a superior ability to process spatial information 
utilise their vast knowledge resources and activate their problem-solving schemas, classified in 
terms of their solutions’ deep and characteristic features, to address complex problems (Elio & 
Scharf, 1990; Persky & Robinson, 2017). Experts’ problem-solving process involves a set of distinct 
steps, including the construction of a mental representation of the problem, exploration for 
suitable problem-solving strategies and procedures in long-term memory, application of the 
relevant strategy and procedures after recalling the necessary information into working memory, 
evaluation of the problem-solving process and solution, and categorisation and storage the 
problem situation and its solution in long-term memory (Newell & Simon, 1972; Nokes et al., 
2010). Repeating these stages, although not sequentially, ensures the building of robust and 
categorical problem-solving schemas (Nokes et al., 2010). In contrast, novices with limited 
experience tend to rely on prototypes that categorise problems based on their superficial 
characteristics (Elio & Scharf, 1990). Individuals can acquire mastery in categorical tasks by 
enhancing their conceptual and procedural knowledge, acquiring strategies that enable them to 
deal with these tasks effectively and applying these strategies. The progression from a novice stage 
to an expert stage is not a direct process; learners must undergo various stages (Dreyfus & 
Dreyfus, 2005). The situation is similar for learners who reach spatial generalisations. 
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Experts’ approaches differ significantly from novices’ in various problem-solving steps. Novice 
problem-solvers rely solely on the information and relationships explicitly mentioned in the task to 
form mental representations of the problem situation. Most of their problem-solving errors result 
from incorrect mental representations of the problem (Cifarelli, 1998; Lewis, 1989; Sutherland, 
2002). Mental representations are temporary cognitive structures that model the problem situation 
automatically constructed by the problem-solver (Björklund, 2013). These include the conceptual 
structures implicit in the problem situation and the strategies and procedures mandated for the 
solution (Nokes et al., 2010; Sutherland, 2002). While experts quickly connect with these structures 
when solving problems, novices cannot easily link with other previously learned knowledge when 
solving a problem, and the strategies they use when solving the problem are intuitive (Nokes et al., 
2010; Persky & Robinson, 2017). In problem-solving processes, novices may act based on their 
preconceptions and biases, leading to inappropriate decisions and a higher likelihood of errors and 
negligence (Persky & Robinson, 2017). On the other hand, experts employ appropriate domain-
specific strategies, reflect on their procedures while implementing solutions, and can identify and 
correct their mistakes, including those that stem from misrepresentations of the problem situation 
in their minds (Nokes et al., 2010). The study of novice-expert problem-solving processes and 
schemas has long been a topic of interest among researchers. However, there has been a lack of 
discussion on learners’ processes of reaching spatial generalisations from this perspective. This is a 
considerable research area that deserves further exploration and investigation. 

2. Method  

The present study employed a qualitative theory-testing case study design based on a deductive 
approach and pattern-matching analysis. Qualitative deduction enables the researcher to scrutinise 
existing theories, gather data to support them, and affirm or disprove them based on the obtained 
data (Creswell, 2014). Additionally, pattern matching enables the comparison of the proposition 
patterns derived from the theories to be tested with the patterns of observed cases, thereby 
facilitating the identification of connections between them (Bitektine, 2008; Sinkovics, 2018; 
Vargas-Bianchi, 2020). The two theories were used as reference frames to describe the participants’ 
processes of reaching spatial generalisation in the context of drawing the surface nets of solids. 
These theories were Polya’s problem-solving steps and novice-expert problem-solving schemas, 
explicitly addressing the novice, competent and expert problem-solving behaviours. The theories 
made it possible to predict what will happen in the phenomenon under study (Lokke & Sorensen, 
2014). The tasks of drawing the surface nets of solids were treated as problem situations in the 
study, and the behavioural patterns of the participants during the problem-solving process were 
investigated within the context of these two theoretical frameworks; thus, it was tried to define the 
spatial generalisation processes of learners. The theories were extended to participants’ 
behavioural patterns in problem-solving steps and their performances on spatial visualisation 
tasks to describe the processes of reaching spatial generalisations. The purpose of theory testing is 
not only to test the compatibility of collected data with theories but also to refine, develop, and 
expand these theories’ boundaries (Bhattacherjee, 2012). Hence, how participants reached spatial 
generalisations was defined according to the behavioural patterns exhibited in the spatial problem-
solving steps and the characteristics of the participants’ performances in spatial tasks, which point 
out the development stages of their problem-solving schemas. 

2.1. Participants 

The study participants were determined using purposeful and identical sampling techniques 
(Cresswell, 2013; Johnson & Christensen, 2020). The purposeful sampling allows for forming a 
sample that can provide detailed and in-depth information about the studied domain (Mertens, 
2020; Sargeant, 2012). Considering that those with low spatial visualisation skills cannot reach 
spatial generalisations, while those with high skills are most likely to do so, this study aimed to 
create a sample with spatial visualisation performance diversity using a purposeful sampling 
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technique. The sample was chosen from second-grade students who continue a mathematics 
teacher training program, and all took part in the Purdue Spatial Visualization Test [PSVT]. The 
test includes tasks that require individuals to match surface nets, or 2D shape patterns, with 
appropriate solids. The data gathered from pre-service mathematics teachers who showed low 
(15), medium (18), and high performance (11) in this test were likely to describe a better 
understanding of the process of reaching spatial visualisation generalisations. 

The study sample consisted of pre-service teachers who fulfilled low- and high-complexity 
drawing tasks and participated in task-based interviews provided to preserve the diversity of 
spatial visualisation performance. That refers to the identical sampling technique in which 
qualitative and quantitative data are gathered from the same participants (Johnson & Christensen, 
2020; Onwuegbuzie & Collins, 2007). It was anticipated that conducting interviews with the entire 
group, 44 participants (42 female and two male), would facilitate the elucidation of their process 
for arriving at spatial generalisations. A systematic review analysis in qualitative research suggests 
that the sample size required to be interviewed typically range from 9 to 17 to achieve data 
saturation (Hennink & Kaiser, 2022). However, for more complex studies addressing broader 
themes, a larger sample of 20 to 40 interviews may be necessary (Hagaman & Wutich, 2017). Data 
saturation is reached when no additional issues or insights are identified, indicating that the 
collected qualitative data adequately represents the full breadth of people’s experiences (Hennink 
& Kaiser, 2022). Because of the recommendations for the sample size in the qualitative analysis 
literature range from 5 to 60 interviews, the number of participants interviewed in this study was 
considered sufficient (Constantinou et al., 2017; Guest et al., 2006). 

In addition to the above features, the participants received advanced mathematics, geometry, 
and teacher training courses at the time of the study. Furthermore, they had preliminary 
knowledge and experience with the nets of basic solids due to compulsory education exposure in 
the same country spanning elementary, middle, and high school years. 

2.2. Data Collection Tools and Procedures 

This study relied on drawing tasks, task-based interviews, and field notes as sources for data 
collection. Participants completed five low-complexity tasks [LCT] and five high-complexity tasks 
[HCT], requiring them to draw surface nets of solids on checkered paper by considering their 
geometric properties (see Table 1). While LCTs include prisms and pyramids (basic solids), whose 
faces are convex polygons, HCTs contain composite solids, formed from two different face types: 
(a) convex faces, inherited from their constituent-basic solids and (b) concave faces, formed from 
the unification of the two faces, each belonging to different basic solids or the subtraction of one 
face from the other one. 

Table 1 
LCT and HCT examples and problem situation 

Rectangular Pyramid The Composite Solid 

 
(a) 

 

 
(b) 

 
Problem Situation for the Tasks 

First, imagine that you unfold the given solid along the fold lines to its sub-base such that its inner surface is 
visible. Contruct the net, that you imagined, on the checkered paper by taking account the geometric 
properties of the solid and its faces, and utilizing the suitable geometric tools (e.g., ruler, protractor). 
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Based on the participants’ drawings, the researcher generated hypotheses regarding 
participants’ developmental stages of problem-solving schemes and their challenges in specific 
problem-solving steps. Theoretical considerations regarding Polya’s problem-solving algorithms 
and novice-expert problem-solving schemes guided the generation of these hypotheses. For 
instance, a drawing with considerable errors was matched with a novice stage, a drawing without 
errors was associated with an expert stage, and a drawing with only a few errors was mapped 
with a competency stage. 

In order to verify or refute the hypothesis under consideration, a series of interview questions 
(e.g., Can you describe the solid? What geometric shapes are the solid’s surface formed? Which 
one was the reference face or base of your net drawing? How and in what order did you unfold 
the solid’s faces? How did you reflect the geometric features of the faces in your net drawing? 
How did you close your net drawing? Do you recognise the solid?) were formulated in a way 
compatible with Polya’s theoretical framework to reveal the behavioural patterns of participants in 
different problem-solving steps. Upon completion of the drawings, task-based interviews were 
conducted with each participant to test the produced hypotheses and to gather data regarding the 
participants’ thought processes while they were solving spatial visualisation tasks. One of the two 
purposes of the interviews was to identify the relationship between the challenges encountered by 
the participants in their problem-solving steps and their erroneous thinking ways. The other 
purpose was to gather data to characterise the behavioural patterns of the participants at distinct 
stages of proficiency, namely, novice, competent, or expert, for each of the tasks in both LCT and 
HCT. Task-based interviews are a commonly used tool in mathematics education to gather 
information regarding the current and evolving mathematical knowledge and problem-solving 
behaviours of an individual or a group of learners (Maher & Sigley, 2020). 

Participants’ verbal and visual expressions (e.g. hand gestures) were meticulously recorded 
during the interviews using audio and video recorders, while detailed field notes were taken for 
further analysis. Before the interviews, participants were asked to explain their thoughts and 
reasoning processes by connecting the given solids and their drawings while performing the tasks. 
Although the interview questions directed to the participants were prepared based on problem-
solving and novice-expert literature, their unexpected explanations during the interviews caused 
to be made specific changes to some of those questions (Maher & Sigley, 2014; Mejía-Ramos & 
Weber, 2020). 

2.3. Data Analysis 

Data obtained from participants’ drawings, interviews, and field notes were analysed using the 
qualitative theory testing method, which includes deductive and pattern-matching approaches. 
The data were analysed in light of two theoretical frameworks: Polya’s (1957) problem-solving 
steps and the characteristics of problem-solving schemas used by learners at different stages, 
including novice, competent, and expert. The deductive approach uses a structure or 
predetermined framework to analyse data (Burnard et al., 2008). Data collection and analysis were 
ongoing processes carried out simultaneously. In order to analyse the participants’ process of 
reaching spatial generalisations, a data analysis diagram was created that was compatible with 
these two theories and shaped by hypotheses that were tested and verified as data were collected.  

The hypotheses were produced by the researcher who connected those theories with his/her 
own experiences. The validity of those produced hypotheses (predicted theoretical patterns) was 
tested according to whether the cases predicted or foresaw to occur match with the observed 
behaviour pattern. In pattern matching, the researcher compares these hypotheses with the 
observed patterns to decide their validity and attempts to show that the theory overlaps with the 
studied context (Bitektine, 2008; Sinkovics, 2018; Vargas-Bianchi, 2020). The researcher rejected the 
hypotheses when they did not match the observed patterns. The iterative process of formulating 
hypotheses, gathering empirical data, and testing the plausibility of these hypotheses continued 
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until the two theoretical frameworks explained all the observed problem-solving behavioural 
patterns of participants. 

The data analysis table includes the validated hypotheses regarding knowledge and skills that 
must be possessed to successfully perform any spatial visualisation tasks without making any 
errors in each problem-solving step: understanding the problem, developing a strategy, selecting 
and applying the appropriate strategy and evaluating the solution. The table also includes the 
validated hypotheses concerning the participants’ behavioural patterns who were in novice, 
competent and expert stages, defined about the particular cases: whether participants experienced 
challenges in any of the problem-solving steps, at what problem-solving step participants 
experienced difficulty, whether they made any errors in their drawings and whether their drawing 
errors were minor or major. 

The procedures carried out to ensure the validity and reliability of the study were: (a) the data 
analysis, the production of the research hypotheses, and the preparation of the interview questions 
were grounded on the two theories on which many studies have been conducted, (b) a data 
analysis scheme was created according to the derived hypotheses and given its final form 
according to the validated hypotheses, (c) the collected data were analyzed simultaneously and 
separately by the researcher and another experienced mathematics educator, and the 
inconsistencies between them were eliminated through discussions, and (d) the study sample 
included as many participants as possible. 

The data analysis diagram (see Table 2) was organized according to the tested and verified 
hypotheses used to analyze the participants’ process of reaching spatial generalisations in the 
context of the tasks of drawing the solids’ surface nets. The codes in the diagram address the 
behavioural patterns exhibited in the problem-solving steps and characteristics of problem solvers 
at different developmental stages. 

3. Results 

Remarkable findings were achieved upon analyzing the gathered data concerning participants’ 
processes of reaching spatial generalisations in the context of drawing the surface nets of solids. 
The tested and verified hypotheses showed that the participants’ processes of reaching spatial 
generalisations regarding the solution of spatial visualization tasks were compatible with the two 
theoretical frameworks: Polya’s problem-solving algorithm and novice-expert problem-solving 
schemas. Findings indicate that participants’ ability to reach generalisations in solving spatial 
visualization tasks is linked to their problem-solving processes and schemas. 

3.1. Participants’ Problem-solving Processes 

From the verified hypotheses, it was found that participants’ behavioural patterns while solving 
spatial visualisation tasks were consistent with the problem-solving steps defined by Polya. These 
are understanding the configuration of the solid and the task requirements (understanding the 
problem), developing a strategy to open the solid (strategy development), implementing the 
chosen strategy that gives the solid’s net drawing (implementing the chosen strategy), and 
evaluating the resulting net drawing (evaluating the solution). The findings reached through 
tested and verified hypotheses compatible with the theoretical framework regarding the solution 
process of spatial visualisation tasks consisted of the behavioural patterns of the participants 
describing each problem-solving step, numerical data related to these behavioural patterns, 
sample participant drawings and the parts taken from the participant interviews. 
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3.1.1. Theoretical structure regarding the step “understanding the task” 

A precise mental representation of a given solid needs both spatial (e.g., comprehending a 3D 
configuration from its 2D representation and the ability to manipulate and rotate the solid 
holistically in mind), and geometric understanding (e.g., containing knowledge of various 
concepts such as the solid and its surface, nets, components and properties (such as faces, edges, 
and corners)). Understanding the configuration of a solid demands the concurrent usage of a range 
of spatial and conceptual processes, in addition to the coordination among them. From the study 
data detected processes were distinguishing a basic or an unfamiliar solid’s components and 
knowing their geometric properties (for example, the side faces of a triangular prism are 
rectangular), comparing the edge lengths of the solid mentally and denoting these lengths in the 
same unit, comprehending a composite solid’s geometric properties, which is formed after 
combining two or three basic solids and inferring and visualising that composite solid’s and its 
faces’ geometric properties and its invisible faces. Most competent participants did not represent 
some faces of the solids in their drawings, and they inaccurately reflected at least one of the 
concave faces of the composite solids. The study’s findings indicated that comprehension of 
instructions necessitates possessing conceptual knowledge about solids’ nets, as well as 
considering the information presented in the task regarding unfolding the given solid and 
visualising the unfolding process. Unfolding the solid’s surface permits its entire interior or 
exterior surface to be visible, utilising either the bottom base or one of the side faces as a reference 
point. 

3.1.2. Participants’ behavioural patterns compatible with the theoretical structure regarding the step 
“understanding the task” 

More than half of the participants (28) could accurately create a mental representation of the 
pentagonal prism from its 2D representation. However, a significant number of participants (16) 
identified it as a right trapezoid because they had difficulty perceiving its 3D configuration. 
Similar behavioural patterns were observed in tasks 6, 7, and 10, being of compound solids. Out of 
all participants, only 5 made an error in identifying the position of the cube’s bottom base in Table 
3, stating that it is precisely in the middle of the upper surface of the square prism, while the 
remaining recognized its placement correctly. The 34 participants knew that the side faces of the 
triangular prism represented on the 2D plane were rectangular, unlike a significant number of 
participants (8) who perceived the rectangular faces of the prism to be parallelograms. Likewise, 
some participants perceived the solids’ oblique faces in the 5th, 7th and 8th tasks as 
parallelograms, though they are rectangular (see Table 3).  

Of the participants who had misconceptions about what the nets of the solids, overlapped the 
faces while opening the solid (e.g., 5 participants in the 6th task and 4 in the 10th task), and/or did 
not get the specific faces of the solid to touch the base plane completely— left those faces inclined 
(e.g., 4 participants in the 4th task and 3 in the 10th task). Participants who did not understand 
what was asked in the task either took another face of the solid as a reference instead of its base 
(e.g., 4 participants in the 2nd task and 2 participants in the 5th task) or opened the surface of the 
solid such a way that its entire outer surface or some parts of its outer surface were visible instead 
of its inner surface (e.g., 5 participants in the 7th task, 3 in the 8th task and 3 in the 10th task). 
Considering all HCTs, in the 8th task, ten participants could accurately represent the faces created 
concave faces that arose from combining basic solids in their net drawings. In other tasks, this 
number was significantly lower; that is, most participants represented those faces incorrectly or 
did not reflect these faces in their net drawings. A particular number of the competent participants 
drew a whole square or rectangle for one of the concave faces in the HCT tasks (e.g., 7 participants 
in the 6th, 4 in the 9th task and 4 in the 10th task). Apart from these, 18 participants who had 
misconceptions regarding the properties of composite solids or their nets believed that to obtain 
the net of a composite solid, they needed to separately open the basic solids that form the 
composite solid in at least one of their drawings (see Table 4). 
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Table 3 
Example behavioural patterns exhibited by the participants in step of understanding the given solid’s 
configuration 
Understanding the solid’s configuration: 

In the 6th task, while Ebrar incorrectly represented the compound solid in his mind and could not draw its 
net, Hafize made the correct mental representation of the same solid. The part taken from the interviews and 
two images depicting their thoughts reflect the mental representations of the participants. 

Interview parts: 

Ebrar: I could not draw this because I did not understand...I were not able to decide what was the form of 
this solid, so I could not draw... 
Researcher: How is the form of this solid according to you? 
Ebrar: There is a square here, full a square (10). I thought that they put a cube in the middle of it... I did not 
understand what kind of solid it was, so I did not make its net drawing. 

Hafize: ...the back faces of this cube and this prism are joined. (There is) a thin rectangle at the back and a 
square just above it...it looks like the letter T, but it is an upside-down T. 

Mental Representations:  

Erroneous mental representation of Ebrar 
The composite solid represented in the 6th task 

Accurate mental representation of Hafize 
The composite solid represented in the 6 th task 

  
Understanding the solid’s configuration 

From its 2D representation, Banu thought that two of the rectangular faces of the triangular prism were 
parallelogram-shaped, while Pelin correctly represented those faces in her mind. Parts of the interviews with 
Banu and Pelin and participant drawings confirm this finding. 

Interview parts: 

Researcher: Do you recognize the object below? 
Banu: Yes, I know it, a triangular prism. 
Researcher: What shapes are there on the surface of this object? 
Banu: There are parallelograms (2 and 3), rectangles (5), triangles, and isosceles triangles (1 and 4), so that’s 
it.  

Pelin: Triangular prism. Its base (1) and top one (4) are triangles; this (3), that one (5) and the one at the back 
(2) are each a rectangle (showing the faces by touching them with a pencil to the solid’s 2D representation).  

Drawings: 

The solid in the 2nd task Banu’s Drawing Pelin’s Drawing 
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Table 4 
Example behavioural patterns exhibited by the participants in step of understanding what was asked in the 
task 
Understanding what was asked in the task: 

While Sema took the bottom face of the solid as the base, Nazlı took the solid’s face labelled with two (2) as the base. 
Nazlı and Sevda’s drawings and interview parts confirm this finding. 

Interview parts: 

Researcher: Which face did you take as the base? 
Nazli: The unseen face in the background. 

Sema:... (shading) This is my bottom base (1)...These are the side faces (2, 3, and 5). This is my top face (4); I think it is the 
same as my bottom base. 

Drawings: 

The solid in the 2nd task Nazlı’s drawing Sema’s drawing 

   
Understanding what was asked in the task: 

Since Betul had misconceptions about the composite solid’s surface and nets, she left one of the faces without lying it 
entirely on the ground plane. Sara, with the necessary knowledge and skills, made the correct net drawing of the same 
solid. 

Interview parts: 

Researcher: I understand that these squares (1a, 7, 8, 9 and 10) form the cube. I don’t understand how that face (face 
labeled 5 and 4) stands? Is it on the ground plane? 
Betul: It stands like this (s/he stands her/his hand perpendicular to the table plane) 
Researcher: Does it stand in the air? 
Betul: Yes, it actually stands perpendicular to the ground plane. 

Sara: I thought that the bottom base (1) was whole.  
Researcher: What do you mean by using the word, whole? 
Sara: It is like these two solids  (trapezoidal prism and triangular prism) are glued together, but they have a common 
base (1). I thought that the bottom bases (the base of a trapezoidal prism is square, and the base of a triangular prism is 
rectangular) were one piece, and I drew that way. I fixed the bottom base. Then, I laid its side faces down (showing the 
faces 2 and 3). Then, I connected these two faces (4 and 5), rectangular in shape, to the behind face (6), which face we can 
not see. For example, if we take this as the front face (7), this will be the back face (6). I unfolded the back face (6) towards 
the back and connected these two (4 and 5) there...I saw a square face (7) over there. I laid it forward. Then, there are 
three faces (8, 9 and 10), connected to that square face. After I laid the square one (7) down, I thought that this 
rectangular face (9) came forward with the square face. Then, there is a trapezoid (8) here. I thought that if we call this 
corner of the trapezoid as corner A, this corner A also lies with them. Corner A will also come forward. For example, 
let’s say base A will be here. I drew the trapezoids (8 and 10) accordingly. 

Drawings: 

The composite solid in the 10th task Betul’s drawing Sara’s drawing 
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3.1.3. Theoretical structure regarding the step “strategy development”  

One technique to open a solid, making its entire inner surface visible, is to rotate its faces along the 
fold lines at certain angles in a specific order and lay down all the faces of that solid to the base 
plane. The net is formed if the faces of the solid are brought to the same base plane by applying 
rotational movements. Learners can develop many simple or complex unfolding strategies to open 
a solid by using this technique that necessitates visualizing the movement of the faces. The 
findings demonstrated that participants tend to use familiar prototypical strategies (such as 
opening the solid’s side faces around its base) that they learned during their primary, middle, and 
high school years to open the surfaces of low-complexity solids. Likewise, most participants who 
successfully produced net drawings for high-complexity solids developed strategies that 
facilitated opening the surface of the composite solids by coordinating the prototype strategies of 
basic solids. In both LCT and HCT, some participants developed distinct or more sophisticated 
strategies to open the solids. Apart from these, developing a wrong strategy to open the solid’s 
surface or failure to develop any strategy was less common in LCT but more common in HCT. 

3.1.4. Participants’ behavioural patterns compatible with the theoretical structure regarding the step 
“strategy development” 

In the LCT, participants generally adopted a prototype unfolding strategy through which the 
solid’s side faces surrounded its base (e.g., 34 participants in the 1st task, 14 in the 2nd and 36 in 
the 4th task). Slightly more than half of the participants opened the triangular prism so that its 
rectangular faces were arranged side by side. These two are the most preferred unfolding 
strategies in mathematics teaching for opening the basic solids’ surfaces or making those solids’ 
net drawings in elementary, middle and high school years. Moreover, 5 participants in the 1st, 4 in 
the 4th and 3 in the 5th task used a sophisticated strategy to unfold the solid’s surface. However, 4 
participants in the 2nd task, 3 in 3th task, 4 in the 4th task, and 16 in the 5th task developed an 
incorrect strategy or could not create any strategy to open the solid’s surface (see Table 5). 

In the HCT, a significant number of participants (e.g., 13 participants in the 7th task, 22 in the 
8th task) developed a strategy to open the composite solid’s surface by coordinating the basic 
solids’ prototypic unfolding strategies (constituents of the composite solid). Unlike that, 27 
participants in the 6th task, 30 in the 7th task, 20 in the 8th task, 17 in the 9th task and 22 in the 10th 
task were unable to open the composite solid’s surface due to either developing an incorrect 
strategy or failing to develop a strategy. In addition, only one participant developed advanced 
strategies for the 5th and 7th tasks, while the number of participants for the 8th task was 2. 

Table 5 
Example behavioural patterns exhibited by the participants in step of developing a strategy 
Developing strategy: 

Tuna used the unfolding strategy, enabling the placement of the side faces around the bottom base to obtain 
all first-category solids’ nets. Tuna’s drawings for the net of the cube, triangular prism, and rectangular 
pyramid and the interview confirm this finding. 

Interview parts: 

Tuna: I always used the same method. At first, I couldn’t understand the location of the top and bottom base 
shapes, but then I fixed the bottom base and opened the adjacent faces around it. 

Berrak: We have always seen the same solids from high school to now. We have always seen the net of a 
cube, for example, and the net of a pyramid. I think this solid was a little different. Because this is not a solid, 
we are used to seeing it very often (Task 5). 
Researcher: Do you know these (composite solids)? 
Berrak: I do not know any of those. 
Name: It would be a shame if I could not draw a net of this because it is a solid that we have been making 
drawings since primary school. Triangular prisms, prisms, and pyramids are the solids that we know and 
make their unfoldings from primary and secondary school years. 
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Table 5 continued 

Drawings: 

 Tuna’s drawing for the 
1st task 

Tuna’s drawing for the 2nd task  Tuna’s drawing for the 3rd task 

   
Developing strategy: 

Pera could not develop any strategy to open the surface of the composite solid in the 10th task. Tuna opened 
the composite solid in the 7th task with a new strategy, which s/he created by coordinating the prototype 
strategies of opening the side faces around the bases (1a and 1b) of the rectangular prism and trapezoidal 
prism that form it. On the other hand, Mina developed a more advanced strategy by coordinating a complex 
strategy used in opening the surface of the rectangular prism with the prototype strategy (opening the side 
faces around the solid's bottom base) in opening the trapezoid prism. Pera, Tuna and Mina's drawings 
regarding the 7th task and the interview parts with Pera and Tuna support the study findings.  

Interview parts: 

Pera: I never thought of that. Either the shapes don't fit perfectly anyway. I couldn’t open it because nothing 
was regular. Triangle…Square…Ughh I can’t think of it at all. For example, I can’t even think about it right 
now. I can’t think of how to open this at all. 

Tuna: There was a rectangular prism there (rectangular prism with base 1b). I thought of this (composite 
solid) as the bases of two joined and adjacent objects... I formed a gap for their intersection (s/he refers to the 
area where the rectangular prism and the trapezoidal prism overlap)... Then I started to lay the faces down... 
I opened this object (a vertical trapezoidal prism with a bottom base of 1a). I laid its front face (2), its that face 
(4) and the top base down (3). Then I connected this face (4) of the front face of this object to this edge 
(common edge of the front face)... Then I opened this prism (whose bottom base was 1b). First, I opened its 
side face (9) and its back face (6b) of the prism… I drew this and this one (faces 7 and 8) by laying them 
towards the back (the face labelled with 10). 

Drawings: 

The composite solid in the 7 
th task 

Tuna’s drawing Mina’s drawing 

 

 

 
 

 

3.1.5. Theoretical structure regarding the step “implementing the strategy” 

The research findings have identified the two situations that require careful consideration in order 
to implement the chosen strategy effectively. Situation 1: The planar faces of a solid, which are two-
dimensional geometric shapes, are faithfully represented in the solid’s net in a way that preserves 
the edge lengths and angle measurements. That is because opening the solid’s surface by rotating 
its faces along its fold lines is a transformation that conserves the geometric properties of the 
solid’s face shapes. Based on the findings, the transformation of face shapes without distorting 
their geometric features depends on adhering to the construction rules and procedures (procedural 
knowledge) and utilizing the shapes’ definitions and properties while creating a net drawing of 
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the solid (conceptual knowledge). The transformation also necessitates the proper use of geometric 
construction tools, such as rulers and protractors, and the properties of the checkered 
paper. Situation 2: Two faces adjacent both in the surface of the solid and that solid’s net share 
similar geometric and spatial relations between their angles and edges. Findings pointed out that 
considering these relations between adjacent faces ensured the correct positioning of the faces on 

participants’ net drawings which are geometric shape patterns that form after implementing the 
chosen strategy. 

3.1.6. Participants’ behavioural patterns compatible with the theoretical structure regarding the step 
“implementing the strategy” 

A noteworthy proportion of the participants (15 to 44 participants), successful in devising 
strategies, did not commit any errors while implementing their chosen strategy in the LCT. In 
contrast, only drawings of some participants who correctly implemented their chosen strategy (1 
to 6 participants) using their conceptual and procedural knowledge were error-free in HCT (see 
Table 6). A varied number of participants for each LCT (e.g., 14 in the 2nd task and 5 in the 4th 
task) and HCT task (e.g., 3 participants in the 7th and 8 in the 8th task) were unable to use their 
conceptual and procedural knowledge at the same time. Hence, they were unsuccessful in 
accurately projecting the solid’s face shapes on their net drawings during the strategy 
implementation step. Most of the time, even if they had conceptual knowledge, they did not follow 
the established construction rules and procedures, nor did they use the properties of checkered 
paper or geometric drawing tools to depict the geometric face shapes of the given solid accurately. 
A relatively small number of participants encountered difficulties accurately reflecting the spatial 
and geometric relationships between the shapes present on the solid in their net drawings. As a 
result, 3 participants made positioning errors in the 2nd task of LCT. Due to the complexity of the 
tasks, the frequency of positioning errors was higher in the HCT (e.g., 4 participants in the 7th, 3 in 
the 8th and 6 in the 9th and 10th tasks). 

Table 6  
Example behavioural patterns exhibited by the participants in the step of implementing the strategy 
Implementing the Strategy 

Hande correctly determined the geometric properties of the face shapes of the pyramid, but she could not 
correctly reflect these properties in her net drawing. Hande said that the length of [AB] is equal to [BC], 
though she did not draw these line segments at equal lengths. The situation was similar for other triangles 
that Hande refers to as isosceles triangles. Dilara made her drawing thinking that the height of an isosceles 
triangle divides the base into two equal parts, and she accurately reflected all the geometric features of the 
solid’s faces in her net drawing. Hande and Dilara’s drawings and excerpts from the interview are examples 
of the behavioural patterns exhibited by the participants during the strategy implementation phase. 

Interview parts: 

Hande: The base of this is a rectangle (1); we have two big triangles (2 and 5) and two small triangles (3 and 
4). I am not sure, they seem like that. This side ([AB]) and that side ([BC]) have to be equal. When these four 
(triangles labelled with 2, 3, 4 and 5) are joined, they come together at a point. This side ([KA]) and that side 
([AB]) must be equal. I drew it ([KA]) a little smaller. These sides ([KA], [KJ], [CD] and [ED]) and those sides 
([AB], [BC], [EF] and [FJ]) must be equal. 
Researcher: What kind of triangles are these? 
Hande: … isosceles triangles. This and that isosceles triangle are the same size. These two are also isosceles 
triangles.  

Dilara:…I drew it so that the base was rectangular and the side faces were isosceles triangles. 
Researcher: How did you get them to be isosceles? 
Dilara: First, I determined the midpoints of these sides. After all, the height needs to divide the base equally, 
so I drew it accordingly... 
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Table 6 continued 

Drawings: 

The composite in the 3th task Hande’s drawing for the 3th task Dilara’s drawing for the 3th task 

 

 
  

Implementing the Strategy 

Berrin positioned face number 3 incorrectly in her net drawing, which she made for the composite solid. The 
long edge, which is right of the face she drew, should be on the left, and the short left edge should be on the 
right. Berrin, who positioned all the other faces correctly in her net drawing, also drew the pairs of edges 
that will join when the faces are closed of equal length. Sevda made no errors in her net drawing of the 
composite solid, including positioning errors. Berrin and Sevda’s drawings exemplify the findings regarding 
the behavioural patterns exhibited by the participants in the strategy implementation step. 

Drawings: 

The composite solid in the 9th 
task 

Berrin’s drawing for the 9th task Sevda’s drawing for the 9 th task 

 

  
  

3.1.7. Theoretical structure regarding the step “evaluating the solution” (the solid’s net drawing) 

When creating a net for a solid, it is essential to meticulously assess each problem-solving step to 
guarantee that the geometric pattern accurately represents the solid. This scrutiny entails 
monitoring the problem-solving steps (understanding the configuration or task, developing and 
applying the strategy) for potential errors and rectifying the detected errors to achieve an exact 
resolution. The evaluation also involves determining whether the solid’s closed surface can be 
obtained from its net. One can obtain the solid’s surface net by rotating the faces around the fold 
lines, and s/he can get the closed surface of the solid by following the same strategy in reverse 
order. In attempting to close the solid’s net by applying consecutive rotational movements in 
mind, s/he decides whether the faces’ edges that would join were drawn in equal length. The 
findings revealed that only some participants checked the accuracy of their net drawings by 
considering various criteria after constructing them. The findings pointed out that most 
participants conducted a cursory examination of their net drawings, which was insufficient to 
identify and correct any errors or inaccuracies. For this reason, despite the participants’ successful 
implementation of the chosen strategy, the edges of specific faces failed to converge while 
attempting to close their net drawings.  
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3.1.8. Participants’ behavioural patterns compatible with the theoretical structure regarding the step 
"evaluating the solution" (the solid’s net drawing) 

A varying number of participants throughout the tasks did not control the accuracy of their 
drawings or conducted cursory checks that were insufficient in detecting their errors. Fewer 
participants in the HCT reflected all faces of solids into their net drawings compared to the LCT. In 
the initial and last tasks of the LCT, respectively, only one participant and four participants did not 
reflect one of the solid’s faces in their net drawings. However, the number of participants who 
committed this error was higher in the HCT (e.g., 6 participants in the 6th, 6 in the 9th and 3 in the 
10th task). Although the participants’ net drawings appeared to be accurate, specific edge pairs 
that should have been of equal lengths were drawn in different lengths (e.g., 1 participant in the 
1st, 8 in the 4th and 6 in the 5th of the LCT and 3 participants in the 8th, 3 in the 9th and 1 in the 
10th of the HCT). The differences in these edge lengths, which should have joined when the faces 
folded, hindered obtaining the closed surface of the solid from the participants’ net drawings.  

Table 7 
Example behavioural patterns exhibited by the participants in the step of evaluating the solid’s net 
Evaluating the solid’s net: 

Naz drew all the faces of the triangular prism according to their geometric properties. However, she drew 
most of the edge pairs in different lengths instead of equal lengths. Dilara thought of the top and bottom 
faces of the solid as a right triangle. After assigning specific length values to the two sides of one of these 
right triangles, she calculated the third side from the Pythagorean theorem. Dilara drew her net accurately 
using the length values she assigned the triangle's edges. The interview made with Naz and the net 
drawings of Naz and Dilara exemplify the findings regarding the evaluation step of the problem-solving 
process. 

Interview part: 

Naz: I had a bit of a problem with the size here because I couldn’t accurately draw the side lengths of the 
triangle. 
Researcher: How do you think it should have been? 
Naz: I do not think the exact sizes of these sides. The triangle should have been higher in height, or the 
rectangles should have been smaller in width. 

Drawings: 

The solid in the 2nd task Naz’s drawing  Dilara’s drawing 

 
  

Evaluating the solid’s net:   

Suna opened the composite solid’s surface in the 7th task by coordinating the trapezoid and square prism’s 
prototype unfolding strategies. Suna made her drawing by considering the edge lengths that would join 
when her net drawing is folded. However, she realized that she had forgotten to reflect face number 7 but 
did not realize that she had not reflected face number 5 of the composite solid in her net drawing. Nevin 
reflected all the faces of the composite solid in her net drawing and drew the edge pairs in equal lengths that 
would join when her net was closed. 

Interview part: 

Suna: When I close it, this forms the front face (2). When I fold this, it forms the top base (3). This side and 
that side meet (sides n). This side and that side meet (sides m). The lengths of these sides are equal (sides 
m)...I drew this face (4) longer than that face (6a). I drew this face (3) shorter than that face (1a)...(She began 
to explain how she closed the faces square prism). Likewise, I folded that face (9). These are two equal 
rectangles this and that (6b and 9). However, when I closed, I could not form this face (7). That remained as a 
gap...This face forms the back face (10). This one is the top base (8).  
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Table 7 continued 

Drawings: 

The composite solid in the 7th 
task 7 

Suna’s drawing Nevin’s drawing 

 
  

 

3.2. Participants’ Development Stages of Spatial Visualisation Generalisation Processes 

The verified hypotheses showed that participants’ spatial visualisation generalisation processes 
went through certain developmental stages: novice, competent, and expert. Participants’ 
behavioural patterns regarding their problem-solving schemas’ development characterised and 
helped define those stages. The stages, compatible with the novice-expert theoretical framework, 
were defined according to the participants’ drawings with or without errors, whether any 
challenge was experienced in the problem-solving steps and at what problem-solving step they 
experienced challenges. The findings from the tested and verified hypotheses enabled the 
definition of the novice, competent and expert stages characterised by participant behaviour 
patterns, drawings and interview parts. It was given place to the numerical data addressing how 
many participants were at the novice, competent, or expert stage at each LCT and HCT task. 

3.2.1. Development stages of spatial visualisation problem-solving schemas for LCT 

In the Novice Stage (see Table 8), participants encountered difficulty comprehending the 
configuration of the given basic solid. Specifically, they lacked understanding regarding how to 
open the solid, as highlighted in the task. For instance, neither they take the base of the solid as the 
reference point to unfold it nor make their drawings in a manner that would make its inner surface 
visible. Moving on to the Competence Stage (see Table 9), the participants better understood the 
solid’s configuration but still encountered challenges in reasoning about the geometric properties 
of some faces. Despite comprehending the task requirements and devising a suitable strategy to 
unfold the solid, they struggled to construct the nets accurately and did not evaluate their 
drawings’ precision; that is, their net drawings were not free from errors. In the Expert Stage (see 
Table 10), participants consciously managed their problem-solving process without encountering 
obstacles in any problem-solving steps. They successfully made their net drawings with accuracy, 
while some even demonstrated their proficiency by drawing a correct net of the solid using a more 
complex strategy. However, irrespective of the developmental stage, prototype opening strategies 
were the most preferred approach for opening the surface of basic solids. 

  



F. Kurban & H. B. Yanık / Journal of Pedagogical Research, 0(0), 1-31    18 
 

 

 
 
 

Table 8 
Sample problem-solving behavioural patterns exhibited by participants in the novice stage for LCT 

Participants in Novice Stage 

The participant's problem-solving behavioural patterns: Gülden made the internal representation of the 
pentagonal prism as a right trapezoidal prism. 

Drawings: 

The solid in the 5th task Gulden’s drawing Accurate drawing 

 

   
The interview part, made with Gülden: 
Gülden: The bottom of it is a rectangle (1), namely, the place where the solid is put on is a rectangle...the left 
side of the solid is a square. I think this side is the left side, and it is a small square (4). According to me, 
these sides are front and back and are trapezoidal. I can say right trapezoid, yes, right trapezoid (2 and 3). 
The other side, namely the right side of it, is a rectangle (5).  
Researcher: What shapes are its front and back faces?  
Gülden: They are trapezoids, right trapezoids.    

The participant’s problem-solving behavioural patterns: Berra unfolded the pentagonal prism by taking its 
upper base as the reference face instead of its bottom base. When Berra unfolded the solid, its external 
surface was visible, not its internal surface. 

Drawings: 

                                       Berra’s drawing                                                                                  Accurate drawing  

  
The interview part, made with Berra: 
Berra: First, I lifted up this face (2) and the face opposite of it (3). Then I lifted up that square face (4) and the 
rectangular face (5) opposite of it. Lastly, I added the remaining face (6) to this rectangular face.    
Researcher: Which face did you keep fixed? 
Berra: This one (1). 
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Table 9 
Sample problem-solving behavioural patterns exhibited by participants in the competent stage for LCT 

Participants in Competent Stage 

The participant’s problem-solving behavioural patterns: Derin could not deduce that the solid’s oblique 
face (7) must be rectangular and did not check that the edge pairs in his/her drawing that would join when 
she folded her net were equal in length. He/she did not make A1 and A3 errors in his/her drawing. 

Drawings: 

                                        Derin’s drawing                                                                                 Accurate drawing  

  
The participant’s problem-solving behavioural patterns: Tülin did not check whether the number of faces 
of the solid and faces of her net drawing were equal so he/she did not draw the face labelled with 7. He/she 
also did not check the edge pairs in his/her drawing that would join when she fold her net were in equal 
length. He/she made one A1 error, but she drew the faces by considering their geometrical properties and 
positioned them correctly. 

Drawings: 

                           Tulin’s drawing                                                                                Accurate drawing  

  

The interview part, made with Tulin: 

Tulin: I take a rectangular (1) for its base… I drew its front face, pentagonal (2)….Then I opened its left and 
right faces (4 and 5)….and then I drew the other pentagonal face (3), opposite to this face (2), and then I 
added this rectangular face (6) to this face (3). 
Reseacher: Did you take account anything while you were drawing? 
Tulin: For example, I tried to make its front and back faces in equal size… 
Reseacher: What did you do to close your net? 
Tulin: For example, I drew this face (5) elongated so that it would be the same size as this one (3). 
Researcher: Did you take into account their lengths? Were they equal lengths? 
Tulin: I tried to take into account, but I think I could not draw them in same lengths. 
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Table 10 
Sample problem-solving behavioural patterns exhibited by the participant in the expert stage for LCT 

Participants in Expert Stage 

The participant’s problem-solving behavioural patterns: Omur developed a different strategy to unfold the 
solid compared to the other participants. He/she implemented his/her strategy correctly. He/she also took 
into account edge pairs that would join when he/she folds his/her net drawing. 

Drawings: 

Omur’s accurate drawing 
Accurate drawing after implemented a complex 

strategy 

 
 

The interview part, made with Omur: 

Omur: This (1) is the bottom of the solid. First, I unfolded this front face (2). I took this pentagonal face as the 
front face. I unfolded the back face (3) that was opposite position to the front face. I unfolded this small 
square face (4) and this right face (5) to the back face. Similarly, I added this face (6) to the back face (3), and 
this face (7) to this small square. I connected all these faces (3, 4, 5, 6 and) to the back face. 
Researcher: Did you consider anything while drawing? 
Omur: For example, I drew this edge and this edge in equal length. I drew them 3 units long.  

 
3.2.2. Development stages of spatial visualisation problem-solving schemas for HCT 

Participants in the novice stage (See Table 11) could not accurately make the mental representation 
of a composite solid. They failed to recognize that composite solids possess distinct geometric 
properties different from their constituent-basic solids. In creating a net of the composite solid, 
most drew the nets of its constituent-basic solids separately and attempted to join them via a 
common edge. In the competence stage (See Table 12), participants explored the geometrical 
properties of composite solids that differed from their constituent-basic solids’ properties. They 
developed strategies for unfolding composite solids, coordinating the prototype unfolding 
strategies of basic solids. Despite this progress, however, the participants still possessed certain 
misconceptions or misunderstandings regarding the properties of the composite solids and their 
nets. As an example of this case, net drawings of participants, which resulted in forming two 
closed surfaces instead of one when folded, can be given. Advanced problem-solving schemes 
define the expert stage (See Table 13), in which participants drew the net of the composite solid 
without any error. This situation implied that the participants in this stage checked the accuracy of 
their solutions. Some participants also developed more complex unfolding strategies by choosing 
non-prototypical strategies of the basic solids that form the composite solid. 
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Table 11 
Sample problem-solving behavioural patterns exhibited by participants in the novice stage for HCT 

Participants in Novice Stage 

The participant’s problem-solving behavioural patterns: Ebrar and Ayfer conjectured that the composite 
solid is formed from a square prism and a cube that was placed on the middle of the top-face of this square 
prism, so Ebrar did not draw its net but Ayfer developed a wrong strategy to unfold it. 

Drawings: 

The mental 
representation of 
Ebrar and Ayfer for 
the solid in the 6th 
task 

Ayfer’s drawing The presented composite 
solid in the 6th task 

Accurate drawing 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

The interview part, made with Ayfer: 
Ayfer: I unfolded this prism like this (the faces labelled with 1, 2, 3, 4, 5a and 10) ... I unfolded this cube (5b, 
6, 7, 8 and 9) to here. I opened the cube to its the top-face (10) ... I tried to keep the cube on the top. 
Researcher: Did you unfold this cube to the top-face of that square prism. 
Ayfer: Yes. 

The participant’s problem-solving behavioural patterns: Although Tugce made the internal representation 
of the composite solid correctly, he/she did not have sufficient knowledge about the surface and the faces of 
a composite solid or properties of a net of a solid. Threfore, he/she developed a wrong strategy to unfold 
this composite solid. 

Drawings:    

Tugce’s drawing Tugce’s folding 
process 

Tuğçe’s folding process The internal image of Tugce 
for the solid in the 6th task 

 

 

 
 

 

 
 

 

 
 

The interview part, made with Tugce: 
Tugce: It looks like there’s a cube placed on top of its rectangular prism. 
Researcher: Where does the cube stand? Is it in the middle of the upper face of the prism that was below?  
Tugce: It is both in middle and not in the middle. Actually, it is not in the middle. How can I tell you? Their 
back faces are adjacent.... 
Reseacher: How did you unfold? 
Tugce: First of all, I opened the side faces around the base (2, 3, 4 and 5a). After that, I opened that top face 
(the face labelled with 10 that was drawn like a rectangular) to the backwards, and then I opened the cube (6, 
7, 8, 9 and 5b).  
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Table 11 continued 
Researcher: I don’t quite understand how you opened the cube there (At the beginning, the researcher did 
not understand the strategy developed by Tugce to unfold the solid)…. 
Researcher: How do you close your net? 
Tugce: Firstly, I closed the side faces around the base (2, 3, 4 and 5a). When I folded this face (10), it stood 
upper the bottom face (1). When I folded this face (10), these faces (5b, 6, 7, 8 and 9) carried out with it. I tried 
to close these shapes (5b, 6, 7, 8 and 9) so that they formed a cube on this large rectangular (10). I folded 
these squares (5b, 6, 7, 8 and 9) backwards, not forwards…. 
Researcher: How was the position of the solid while you were opening? How was the appearance of it? 
Tugce: How can I tell you?...  I opened it by thinking as if its back was looking at me. 

 
Table 12 
Sample problem-solving behavioural patterns exhibited by participants in the competent stage for HCT 

Participants in Competent Stage 

The participant’s problem-solving behavioural patterns: Nermin made the solid’s internal representation 
in his/her mind correctly and were able to develop a strategy to unfold the solid. However he/she forgot to 
draw the sub-part (5a) of the T-shape face. This situation triggered his/her errors. He/she did not reason 
about geometrical properties of some faces of it so there were deformation of geometric properties of some 
drawn faces. He/she perceived square and rectangular faces of the solid as parallelograms and trapezoids.  

Drawings:  

Nermin’s drawing Accurate drawing 

 
 

 
 

The participant’s problem-solving behavioural patterns: Hilal were able to coordinate unfolding strategies 
of the cube and the prism and developed a correct strategy. However, he/she drew an extra face on his/her 
net drawing and the U-shaped face as a rectangle. When he/she folded his/her drawing, two closed surface 
is obtained, though he/she should have obtained one closed surface.  

Drawings:  

Hilal’s drawing Accurate drawing 
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Table 12 continued 
The interview part, made with Hilal: 

Hilal: The cube is above, and the prisma is below. Was that what type of prism? Is it a rectangular prism? or 
Is it a square prism?  The back of the prism and the back of the cube are in same alignment. 
Hilal: First, I unfolded prism… I drew this rectangular (1) to represent the bottom of the solid. Then, I drew 
this rectangulars to represent its left and right faces (3 and 4). I drew this to represent its front face. This is 
top-face (10) of the prism. When I fold this face (10), it stands above the bottom face (1). This (5a) is the 
opposite face of the front face (2). These squares (5b, 6, 7, 8, 9 and light grey faces) belong to the cube. This 
(5b) is back face of the cube. These two represent these two (7 and 9), and this square is the top face of the 
solid (6). This one (the light grey face) is the bottom face of the cube. When I fold the cube, this face (light 
grey face) stays at the bottom of the cube.    

 
Table 13 
Sample problem-solving behavioural patterns exhibited by the participant in the expert stage for HCT 

Participants in Expert Stage 

The participant’s problem-solving behavioural patterns: Sena drew a net of the composite solid correctly. 
He/she unfolded the surface of the composite solid by coordinating the strategy of the cube and prism. 
He/she drew the edge pairs in equal length that would join when he/she folded his/her net drawing. 

Drawing and Interview Parts: 

Sena’s Correct Drawing Interview part, made with Sena 

 

Sena: I thought that a cube was placed on a rectangular prism, and I tried to 
unfold according to it. 
Researcher: Can you describe the solid a little bit? 
Sena: As far as I understand, the back faces (5a and 5b) are adjacent. We must 
take the back faces as a whole (the invisible T-shaped face) 
Researcher: How did you unfold the faces of the solid? In what order? 
Sena: I lied these side faces (2, 3, 4 and 5) to the ground . I drew the upper base 
of the rectangular prism (10) by subtracting a space equal to the cube. I 
subtracted a square, equal to the bottom base of the cube, from this rectangular 
(10) (he/she is describing the U-shaped face). The plus-shaped part (6, 7, 8, 9 
and the top part of the face 5) of my drawing represents the cube’s net. I 
unfolded the cube, here. I didn’t put the bottom base of the cube. That’s why I 
had removed this part. I made sure that there was a gap between the prism and 
cube. I opened the side faces (7, 8 and 9) of the cube upwards, that is, to the 
upper base (6) of the cube. 
Researcher: Did you pay attention the lengths of the edges in your drawing? 
Sena: For example, I take 3 units long these edges. If I lift up these faces, they 
will join with each other. 

 

3.2.3. The number of participants in different developmental problem-solving stages for LCT and HCT 

Table14 provides information abut two situations: (a) how many participants, grouped as low, 
medium, and high performers based on their PSVT scores, demonstrated that their problem-
solving behavior patterns were at the novice, competent, or expert stages? (b) what is the 
distribution of participants exhibiting novice, competent and expert problem-solving patterns in 
each task? 
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Table 14 
Distribution of low, medium and high PSVT performer participants onto the novice, competent and expert 
stages in each task of LCT and HCT 

Development Stages 
LCT  HCT 

1 2 3 4 5 6 7 8 9 10 

Novice            
Low  
Medium 
High 

0 2 3 2 9 14 13 12 10 14 
0 2 0 2 6 11 14 7 5 5 
0 0 0 0 1 2 2 1 2 3 

Total      0 4 3 4 16 27 30 20 17 22 
Compotent            

Low 
Medium 
High 

3 10 6 11 5 1 2 2 4 1 
0 11 10 8 2 7 4 9 11 12 
0 4 3 2 3 7 7 7 6 6 

Total  3 25 19 20 10 15 13 19 21 19 
Expert            

Low 
Medium 
High 

12 3 4 2 1 0 0 1 1 0 
18 5 8 8 10 0 0 2 2 1 
11 7 10 9 7 2 1 2 3 2 

Total  41 15 22 20 18 2 1 5 6 3 

Most low-performer participants exhibited behavioural patterns suggesting that they were 
competent in tasks 2, 3, and 4, while high-performers’ behavioural patterns indicated that they 
were at the expert stage. Meanwhile, many medium performers demonstrated behavioral patterns 
signifying their attainment of competence or expertise in those three tasks. The great proportion of 
low-performers displayed characteristic problem-solving behaviours akin to those of novices 
during task 5 and the HCT tasks. Many medium performers’ problem-solving tendencies were at 
the novice stage in Tasks 6 and 7, while they were at either novice or competent behaviour in the 
remaining HCT tasks. A significant number of high-performers’ problem-solving schemas were at 
expert stage on  taks 5, and at competent stage in HCTs. The participants with expert behavioral 
patterns in the 6th and 7th tasks were exclusively among high-performers, while they were among 
both medium and high performers in the 10th task. Although participants displaying expert 
problem-solving behavior in Tasks 8 and 9 were among medium or high performers 
predominantly, it was noted that one low-performer also exhibited expert problem-solving 
behavior in these tasks. 

In the initial four tasks of the LCT, there were only a small number of participants exhibiting 
characteristics of the novice stage, but this number notably increased in the 5th task (see Table 14). 
Most participants showed expert-stage characteristics in the first task of the LCT, with a few 
exceptions. However, in the other tasks of the LCT, many participants portrayed characteristics of 
both the competent and expert stages. In contrast to these findings, in each of the tasks in the HCT, 
the majority of participants exhibited characteristics of the novice or competent stage. There were 
relatively few participants who demonstrated expertise in the HCT tasks, although the numbers 
varied from task to task. 

4. Discussion  

The research findings demonstrated that pre-service mathematics teachers’ processes of reaching 
spatial generalisations of drawing the surface nets of solids were compatible with the two 
theoretical frameworks: Polya’s problem-solving algorithm and novice-to-expert problem-solving 
schemas. The problem-solving processes of the participants involved a series of steps, including 
the creation of a mental representation of the problem situation (comprehending the configuration 
and the requirements of the task), devising an appropriate strategy to unfold the surface of the 
solid, implementing the strategy enabling to draw one of the nets of the solid, and finally 
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evaluating the accuracy of the net drawing representing the opened surface of the solid. The 
present research establishes that learners’ attainment of spatial generalisations undergoes a 
developmental process characterized by three key stages —novice, competent, and expert— which 
can be accurately predicted based on their performance in spatial visualization problem-solving 
tasks. A comprehensive grasp of the fundamental mechanisms underlying participant 
performance variations is imperative for augmenting academic achievement. Therefore, 
researchers are increasingly interested in analyzing differences in learners’ behaviours exhibited in 
educational assessments rather than simply assessing outcomes. Such analyses offer valuable 
information about the differences in the cognitive structures of successful and unsuccessful 
learners and assist in designing suitable educational interventions (Stadler et al., 2019). 

When faced with a problem for the first time, individuals must seek to fully comprehend the 
nature of the issue before attempting to devise a solution (Akin, 2022; Ozturk et al., 2020). This 
initial step holds a pivotal role in setting the course for any subsequent actions that may be 
undertaken. In situations where a problem is presented in written form, the ability to connect and 
reason with relevant mathematical knowledge and skills is of utmost importance in achieving a 
comprehensive understanding of the issue at hand. Whereas, if given a problem involving a spatial 
configuration, as in this study, cognitive processes such as grasping and visualizing spatial or 
geometric shapes need to be activated in order to understand it (Akin, 2022; Unlu & Ertekin, 2017). 
The initial step for comprehending the problem situation is to transform the information presented 
through external representations into internal representations, which can be achieved by 
processing that information via perceptual mechanisms (Fischer et al., 2012; Zhang, 1997). This 
study found that expert and most competent participants were able to visualize the solid correctly 
from its 2D representation, knew geometric concepts related to the task (e.g. solid and its 
components, its surface and nets), understood how to open the surface of the solid, and developed 
insight about how to draw the solid’s net by associating the given information in the task with the 
represented configuration of the solid. The initial stage of problem-solving, which entails 
capturing and representing pertinent information about the situation, is a critical determinant of 
the ultimate success or failure of the solution process (Pribyl & Bodner, 1987). Unlike the 
participants in competent and expert stages, the study revealed that novice participants failed to 
create an appropriate internal representation of the given spatial task, which led them to make 
radical and logical errors, preventing them from accessing an accurate solution. According to 
Lewis (1989), most problem-solving errors occur during the initial step, where the problem is often 
misrepresented in the mind rather than during the strategy execution. It is important to note that 
accurate mental representation of a problem is crucial for correct decision-making and 
implementation of operations required for a solution (Schnotz et al., 2010; Zhang, 1997). 

The strategy development involves learners’ utilization of generalised actions that have been 
employed previously to solve similar problems. Learners either apply these generalised actions 
directly to newly encountered problems or modify and combine them to achieve the desired 
outcome (Rott et al., 2021). This approach allows learners to efficiently and effectively solve 
complex problems by calling the appropriate strategy from their repository of experiences. In this 
study, the participants who demonstrated success in solving spatial tasks were observed to utilize 
prototype strategies for basic solids, while they opted for strategies developed through the 
modification and amalgamation of those prototype strategies in the case of composite solids. These 
findings are in line with the study of Rott et al. (2021). Apart from this, this study has also 
manifested that the novice participants’ inadequate conceptual knowledge led to their inability to 
accurately represent the problem, thus impeding them from developing a viable strategy. In 
contrast, the strategies implemented by expert or skilled competent problem-solvers surpassed the 
mere utilization of prototypes or their combination and showcased their potential to generate more 
sophisticated strategies. Moreover, most participants demonstrated competent or expert problem-
solving behaviour patterns in cases where prototype strategies were adequate. On the other hand, 
in more complex spatial tasks in which combination and coordination of prototype strategies were 
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necessary or a new strategy was preferred, most participants exhibited novice problem-solving 
behaviour patterns. The study findings regarding the problem-solving strategies of novices are 
consistent with the assertion made by the research of Persky and Robinson (2017), where they 
posited that when learners encounter difficulties in comprehending a problem, they develop a 
flawed mental representation of it, leading to the application of inappropriate problem-solving 
strategies that adversely impact the process. In agreement with this study’s findings concerning 
complex tasks, Price et al. (2022) state that experts relying on their existing knowledge base tend to 
develop more conscious and reflective strategies, unlike novices, even when confronted with 
unfamiliar problems or complex tasks. 

Stadler et al. (2019) have identified a distinction between learners who can select the correct 
problem-solving strategy but struggle with its error-free implementation, and learners who can 
successfully apply the selected strategy without any errors. The study noticed that participants 
who applied their chosen strategy successfully could effectively utilize and coordinate their 
conceptual and procedural knowledge. In contrast, those who could not apply it faced difficulties 
reflecting the faces’ geometric features on their net drawings. In addition, participants who paid 
meticulous attention to the geometric and spatial relationships between the face shapes, both in the 
solid form and when represented as a net, could apply their developed strategy without error. On 
the other hand, those who did not gain expertise in the tasks made positioning errors. The first 
finding is compatible with the study of Braithwaite and Sprague (2021), drawing attention to the 
importance of conceptual and procedural knowledge in problem-solving. They emphasized that 
learners prioritize procedures over concepts in most contexts in strategy implementation. 
However, in situations where procedural knowledge alone is not adequate to solve the problem, 
they use conceptual knowledge as a supplement. The second finding aligns with the study 
conducted by Sung and Park (2012), wherein they highlighted the significance of spatial abilities, 
particularly the capacity to manipulate 2D or 3D figures mentally, in the efficient execution of 
solution strategies. 

Mathematics education research has frequently reported that learners overlook the crucial step 
of evaluating their work during or after solving problems despite the widespread recognition of 
this process’s significance. On the other hand, evidence suggests a strong positive correlation 
between successful problem-solving and carefully evaluating one’s work (Kontorovich, 2019). In 
this study, consistent with the previous research conducted in mathematics education, it has been 
observed that only a particular part of the participants performed a comprehensive evaluation of 
their net drawings by scrutinizing multiple criteria after their creation. On the other hand, most 
participants conducted a superficial examination, not allowing them to find errors in their net 
drawings or did not make any evaluations. Furthermore, more participants fulfilled the 
requirements of all problem-solving steps, including checking their solutions’ accuracy in low-
complexity tasks. However, in the case of high-complexity tasks, a relatively low number of 
participants checked the accuracy of their solutions. This finding is affirmed by Kontorovich's 
(2019) study, which highlighted that checking a solution in certain problem situations can be 
relatively less cognitively demanding than in others. This situation brings attention to the interplay 
between the availability of checking strategies and the decision to execute them. From this 
standpoint, it is plausible to state that in low-complexity tasks, more study participants evaluated 
their solutions, as the associated controls required less cognitive effort. However, only some 
participants could execute the checks for high-complexity tasks due to the extreme cognitive 
demands they entail. 

The study found the number of participants with a low problem-solving schema who could 
handle low-complexity spatial visualization tasks was more numerous than those with a high-
order problem-solving schema who could handle high-complexity tasks. According to the schema 
theory, skilled performance is achieved by creating increasingly complex schemas in which the 
elements of lower-level schemas combine into higher-level schemas (Sweller et al., 1998). The 
inadequate knowledge and skills, as well as the cognitive demands of the tasks, caused the 
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participants to exhibit behavioural patterns, indicating that they were at different developmental 
stages in different spatial visualization tasks. By creating comprehensive and well-structured 
schemas, learners can perform better on more complex tasks. Participants’ errors in specific 
solution steps of spatial visualisation tasks and the proximity of their solutions to an accurate 
solution helped to define the spatial visualisation developmental stages. This finding is in line with 
the study of Nokes et al. (2010), reporting that learners’ domain knowledge and skills impact each 
step of the problem-solving process, from making a mental representation of the problem to 
evaluating the solution. Because of that, experts and novices can make a problem’s mental 
representation very differently, even when looking at the same stimulus. Likewise, the study 
participants in the novice stage struggled to represent spatial visualisation tasks accurately or 
develop effective strategies, contrary to participants in other stages. However, participants at the 
competent and expert stages tended to use prototype strategies derived from their prior 
experiences or strategies they developed by combining and coordinating these strategies. These 
findings can be explained by the studies of Nokes et al. (2010) and Pretz et al. (2003). Learners 
make connections between their prior knowledge and the related task when choosing or 
implementing strategies (Nokes et al., 2010). During their problem-solving process, learners 
retrieve an analogical solution from their memories based on clues and patterns, as described by 
Pretz et al. (2003). If the analogical solution aligns with the encountered task, or if they have the 
necessary knowledge and skills to bridge any gaps between the solution and the task at hand, they 
can solve it correctly. However, they cannot reach a correct solution if the analogical solution does 
not align with that task. This study concluded that participants who completed spatial 
visualization tasks without errors evaluated their solutions. This finding is consistent with that of 
Nokes et al. (2010), indicating that experts are more adept at recognizing and rectifying errors than 
novices. Apart from these, this study also implies that there may be significant relationships 
between participants’ PSVT performances (low, medium, and high) and the development of their 
problem-solving schemas, categorized as novice, competent, or expert stages. This finding may be 
the focus of future quantitative studies. 

Gaining expertise requires experiencing several stages, and it is essential to note that a learner 
cannot transition directly from novice to expert. Indeed, a learner must experience intermediate 
stages before achieving expert status. It is also worth noting that during this process, an individual 
may simultaneously exhibit characteristics of two stages (novice/expert and intermediate) (Persky 
& Robinson, 2017). In parallel with those, this study identified that participants went through three 
stages —novice, competent and expert— in reaching spatial visualization generalisations. The 
participants in the novice stage lacked sufficient conceptual and procedural knowledge and skills 
to solve the task at hand. In addition, they could not organize their knowledge and skills in a 
manner that allowed them to accurately represent the problem in their mind or develop a correct 
strategy to solve it. Because they managed the problem-solving process unconsciously, they made 
mistakes in understanding the task and developing strategies, which radically hindered them from 
reaching an accurate solution. In contrast, participants in the competent stage tried to manage their 
problem-solving procedures consciously by employing their existing conceptual knowledge and 
skills. However, despite their efforts, they could not attain an error-free solution. The amount and 
quality of conceptual and procedural knowledge and skills of expert stage participants, as well as 
their ability to manage the problem-solving process in a highly conscious manner, enabled them to 
solve the tasks they encountered without error. The characteristics of spatial visualisation 
generalisation stages in this study are compatible with the abstraction stages of Cifarelli’s (1988) 
problem-solving process. According to Cifarelli (1988), mathematical problem solutions go 
through four stages of abstraction. In the first stage (recognition), learners realize that the new 
problem they face is similar to the ones they have solved before. However, they cannot predict the 
difficulties that may arise due to the unique features of the new problem situation (Goodson-Espy, 
1998). The second one (re-representation) is the stage where learners can distinguish the 
similarities and differences between the problems they already know the solution to and the new 
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problem situation, but they cannot think about potential strategies and their solutions. In the third 
stage (structural abstraction), the learner can determine a solution method based on the distinctive 
features of the new problem and realize this consciously by adapting the strategies they have used 
before and considering potential solutions (Goodson-Espy, 1998). The last one is referenced as 
structural awareness whereby conscious solutions are derived through the flexible utilization of 
mathematical concepts and skills. 

5. Conclusions  

Matching spatial ability with intelligence (Galton, 1883), expressing it as an “innate ability to 
visualise that a person has (Sorby, 1999)” and focusing on the connections between performance 
on spatial ability tests and age, gender, and occupation types has led to the idea that spatial 
visualisation ability is a talent that not everyone has at the same level and one that can be inherited 
from genes. Moreover, the automaticity and practicality of experts’ spatial visualisation 
performances pose a challenge in comprehending the sequential problem-solving steps passed 
through while they perform spatial visualisation tasks. Likewise, the stages of cognitive 
development that individuals undergo before achieving expertise in spatial visualization tasks are 
often overlooked. Based on theory-testing, this study achieved remarkable findings revealing that 
pre-service mathematics teachers’ processes of reaching spatial visualisation generalisations were 
compatible with the two theories of Polya’s problem-solving steps and novice-to-expertise 
problem-solving schemas. The participants’ process for solving spatial visualisation tasks involved 
a structured approach comprising four sequential steps. These steps encompassed understanding 
the task, formulating a strategy, executing the strategy, and evaluating the solution. The process of 
achieving spatial generalisations occurred in three sequential stages: novice, competent, and 
expert. The expert stage is characterised by participants’ conscious problem-solving management, 
ultimately leading to an accurate solution. Even if the problem-solving process tries to be managed 
consciously, a minor mistake in any step can lead to failure. This outcome defines the competent 
stage. The novice stage involves an unconscious problem-solving process, which leads to mistakes 
in understanding the problem and developing a strategy, radically affecting the solution. The ease 
of constructing low-order schemas led to more participants in the LCT exhibiting expert-stage 
behavioural patterns. Due to the excessive effort required for constructing high-order schemas, 
fewer participants demonstrated expert-stage behavioural patterns in the HCT.  

Understanding how spatial generalisations are reached can provide valuable insights into 
developing practical and functional approaches for teaching learners to solve spatial visualisation 
problems and improve their ability to generalise solutions by identifying similarities, differences, 
and structural connections (Mulligan et al., 2018). Comprehending the progression of spatial 
visualisation ability may also be instrumental in enabling educators and researchers to devise 
suitable learning experiences for students at varying levels, thus facilitating the development of 
their spatial reasoning skills (Harris, 2021). In addition to its potential, this study has certain 
limitations in various aspects including the sample size, the used spatial visualisation tasks, 
distribution rates of participants according to gender and not focusing on possible connections 
between participants’ spatial test performances and spatial generalisation processes. To strengthen 
the quantitative aspect of the study by preserving its qualitative aspect, it is recommended to 
conduct focus group discussions with participants who share similar characteristics (e.g., reveal 
similar behavioural patterns in performing spatial tasks) after increasing the sample size. For other 
limitations, it is recommended that future studies adopt a gender-balanced approach, utilize 
diverse spatial visualization tasks and prioritize both qualitative and quantitative aspects. 
Enhancing the reliability and validity of the collected data with statistical methods can be a useful 
way to draw more robust conclusions about the generalisability of the results. To ensure accurate 
and representative data, researchers should implement these measures, which will improve the 
overall quality of the findings. Furthermore, it would be beneficial for future studies to delve into 
the potential correlation between the performance of participants in spatial visualization tests and 
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their approach to spatial problem-solving, including the various stages involved. For example, the 
research could seek to understand how participants’ scores on the PSVT - categorized as low, 
medium, and high performers - relate to their problem-solving proficiency, ranging from novice to 
competent and expert levels. Finally, this study used Polya’s problem-solving steps and novice-to-
expert problem-solving schemas as theoretical frameworks. However, alternative theoretical 
frameworks may produce additional findings on how learners achieve spatial visualisation 
generalisations. 
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